Title of article :
Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis
Author/Authors :
Ebrahimzadeh, Farzad Department of Statistics and Epidemiology - Faculty of Health and Nutrition - Lorestan University of Medical Sciences, Khorramabad , Hajizadeh, Ebrahim Department of Biostatistics - Faculty of Medical Sciences - Tarbiat Modares University, Tehran, Iran , Vahabi, Nasim Department of Biostatistics - Faculty of Medical Sciences - Tarbiat Modares University, Tehran, Iran , Almasian, Mohammad Department of the English Language - Faculty of Medicine - Lorestan University of Medical Sciences, Khorramabad, Iran , Bakhteyar, Katayoon Department of Public Health - Faculty of Health and Nutrition - Lorestan University of Medical Sciences, Khorramabad, Iran
Abstract :
Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences
for the family and the society. In the present study, three classification models were used
and compared to predict unwanted pregnancies in an urban population.
Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in
Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables
were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis,
and probit regression models and SPSS software version 21 were used. To compare these models,
indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct
predictions were used.
Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression
models indicated that parity and pregnancy spacing, contraceptive methods, household income and
number of living male children were related to unwanted pregnancy. The performance of the models
based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit
regression, and linear discriminant analysis, respectively.
Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it
seems necessary to revise family planning programs. Despite the similar accuracy of the models, if
the researcher is interested in the interpretability of the results, the use of the logistic regression
model is recommended.
Keywords :
Khorramabad , Probit Regression , Discriminant Analysis , Logistic regression , Unwanted Pregnancy
Journal title :
Astroparticle Physics