Title of article :
Evaluation of thallium rate in soil after dispersive liquid-liquid micro-extraction
Author/Authors :
Abdollahi Baraei, S.B Materials Engineering Department - Faculty of Modern Science & Technologies - University of Advanced Technology , Afzali, D Chemistry Department - Faculty of Modern Science & Technologies - University of Advanced Technology
Abstract :
Thallium is widely found in nature, but the only inorganic stones full of this element are crookesite and lorandit. It is
also found in pyrites of copper, lead and inorganic stones. The element and its compositions are toxic and harmful to the
environment; therefore, its application requires caution and further research. It is important to develop sensitive and
accurate analytical methods to determine trace levels of thallium in environmental and real samples. In this research,
dispersive liquid-liquid microextraction based on solidification of floating organic drop as a sample preparation method
was used for separation and preconcentration of ultra-trace amounts of thallium in soil samples prior to graphite-furnace
atomic-absorption spectrometry. Investigated effective parameters on extraction include pH, the amount of chelating
agent, type and volume of extraction solvent and extraction time. Under optimum conditions, the calibration curve was
linear in the range of 0.2-10.0 ng mL−1 of thallium in the original solution, with limit of detection of 0.03 ng mL−1. The
relative standard deviation (RSD) for ten replicated determinations of thallium ion at 5.0 ng mL−1 concentration level was
calculated as 3.3%. The proposed method was successfully applied to the determination of thallium in soil samples.
Keywords :
graphite-furnace atomicabsorption spectrometry , dispersive liquid-liquid microextraction , thallium determination , Soil samples
Journal title :
Astroparticle Physics