Title of article :
Prediction of Degree of Soil Contamination Based on Support Vector Machine and K-Nearest Neighbor Methods: A Case Study in Arak, Iran
Author/Authors :
Ghadimi, Faridon Arak University of Technology
Abstract :
The degree of soil contamination in an urban region can be changed by heavy metals. This might result in endangering safety of an urban region. This paper presents an approach to build a prediction model for the assessment of degree of contamination index, based upon heavy metals changes. The heavy metal concentration of Pb, Cu, Ni, Zn, As, Cr and Ni as input was used to build a prediction model for the assessment
of degree of contamination. Two prediction models were implemented such as support vector regression (SVR) and k-nearest neighbor regression method (KNNR). A comparison was made between these two models and the results showed the superiority of the SVR model. Furthermore, a case study in Arak, Iran was conducted
to illustrate the capability of the support vector machines (SVM) model.
Farsi abstract :
ميزان آلودگي خاك منطقه شهري به فلزات سنگين دستخوش تغيير مي شود. در نتيجه ممكن است سلامت ساكنين شهري به خطر افتد. اين مقاله ارائه طريق مدلي است كه شاخص لودگي خاك را به تغييرات فلزات سنگين پيشگويي مي كند. غلظت فلزات سنگين , Pb Cu, Ni, Zn, As, Cr و Ni بعنوان داده ها استفاده گرديده تا ميزان لودگي سنجش گردد. دو مدل SVR و ريگراسيون KNNR مورد استفاده قرار گرفت. نتايج مقايسه بين دو مدل نشان داده است كه مدل SVR برتر بوده است. كارايي مدل با استفاده از پشتيباني ماشين بردار مدل SVM براي شهر اراك مورد آزمايش قرار گرفت.
Keywords :
Degree of contamination , Heavy metals , Support vector machines , K-Nearest Neighbor , Arak
Journal title :
Astroparticle Physics