Title of article :
Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins
Author/Authors :
Shirkavad, Saeed Department of Prosthodontics - Faculty of Dentistry - Urmia University of Medical Sciences, Urmia , Moslehifard, Elnaz Tabriz University of Medical Sciences, Tabriz
Pages :
7
From page :
197
To page :
203
Abstract :
Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. Ac-cording to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength.
Keywords :
tensile strength , Acrylic resins , metal nanoparticles , materials testing
Journal title :
Astroparticle Physics
Serial Year :
2014
Record number :
2430049
Link To Document :
بازگشت