Title of article :
Smart Flat Membrane Sheet Vibration-Based Energy Harvesters
Author/Authors :
Shahbazi, Y Architecture and Urbanism Department - Tabriz Islamic Art University
Pages :
13
From page :
78
To page :
90
Abstract :
The dynamic responses of membrane are completely dependent on Pre-tensioned forces which are applied over a boundary of arbitrary curvilinear shape. In most practical cases, the dynamic responses of membrane structures are undesirable. Whilst they can be designed as vibration-based energy harvesters. In this paper a smart flat membrane sheet (SFMS) model for vibration-based energy harvester is proposed. The SFMS is made of an orthotropic polyvinylidene fluoride (PVDF) flat layer that has piezoelectricity effect. For this aim, polarization vector of PVDF layer is considered parallel to the applied electric field intensity vector. Electrodynamics governing equations of transverse motion of SFMS including active and modified pre-tensioned force are exploited. Transverse displacement component is expanded by the separable form corresponding to the axial and transverse and the linear ODE of motion based on generalized shape coefficients is obtained using Galerkin method. Finally, the explicit relation between forced vibration of SFMS and current and voltage harvesting are obtained. Numerical energy harvesting analyses were developed for an orthotropic rectangle SFMS and the voltage as function of the time is calculated based on different resistances. Parametric simulation shows a 1 m length and 0.5 width SFMS has ability to produce a peak to peak voltage about of 30 mV.
Keywords :
Membrane , Smart structure , PVDF , Electrodynamics vibration , Energy harvesting
Journal title :
Astroparticle Physics
Serial Year :
2019
Record number :
2434329
Link To Document :
بازگشت