Author/Authors :
Neyshabur, Arabyani Neyshabur Branch - Islamic Azad University , safar, h University of Bojnord , saeedi, F mashhad Branch - Islamic AzadMashhad University
Abstract :
Let L bean n-dimensional non-abelian nilpotent Lie algebra. Niroomad and Russo(2011)proved that dim M(L) = 1 2 (n − 1)(n − 2) +1 − s(L), where M(L) is the Schurmultiplier of L and
s(L) isanon-negativeinteger.Theyalsocharacterizedthestructureof
L, when s(L) =0.Assumethat(N,L) isapairoffinitedimensional
nilpotentLiealgebras,inwhich L is non-abelianand N isanideal
in L and also M(N,L) istheSchurmultiplierofthepair(N,L). If
N admitsacomplement K say,in L suchthatdimK = m, then
dimM(N,L) = 1
2 (n2 + 2nm − 3n − 2m + 2)+1 − (s(L) − t(K)),where
t(K) = 1
2 m(m − 1)−dimM(K). In the present paper,we characterize
the pairs(N,L), forwhich0 t(K) s(L) 3. Inparticular,weclas-
sifythepairs(N,L) such that L is anon-abelian filiform Lie algebra
and 0 t(K) s(L) 17.
Keywords :
Filiform Lie algebra , nilpotent Lie algebra , pair of Lie algebras , Schur multiplier