Title of article :
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
Author/Authors :
Rassias, Michael Th University of Zurich - Zurich - Switzerland & Institute for Advanced Study - Program in Interdisciplinary Studies - Princeton, USA , Yang, Bicheng Department of Mathematics - Guangdong University of Education - Guangzhou, P. R. China
Pages :
27
From page :
1
To page :
27
Abstract :
By the method of weight coeffcients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the reverses and some particular cases are also considered.
Keywords :
Hardy-Hilbert-type inequality , extended Riemann-zeta function , Hurwitz zeta function , Gamma function , weight function , equivalent form , operator
Journal title :
Astroparticle Physics
Serial Year :
2016
Record number :
2441202
Link To Document :
بازگشت