Title of article :
The conjugacy class ranks of $M_{24}$
Author/Authors :
Mpono ، Zwelethemba - University of South Africa
Pages :
6
From page :
53
To page :
58
Abstract :
$M_{24}$ is the largest Mathieu sporadic simple group of order $244 823 040 = 2^{10} {cdot} 3^3 {cdot} 5 {cdot} 7 {cdot} 11 {cdot} 23$ and contains all the other Mathieu sporadic simple groups as subgroups. The object in this paper is to study the ranks of $M_{24}$ with respect to the conjugacy classes of all its nonidentity elements.
Keywords :
classes of elements , rank of a group , (p , q , r) , generations , structure constants , conjugacy class fusions , maximal sub , groups.
Journal title :
International Journal of Group Theory
Serial Year :
2017
Journal title :
International Journal of Group Theory
Record number :
2449085
Link To Document :
بازگشت