Title of article :
Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models
Author/Authors :
Yousefi ، A. - Babol Noushiravani University of Technology , movagharnejad ، k. - Babol Noushiravani University of Technology
Pages :
18
From page :
83
To page :
100
Abstract :
Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificial neural networks, including multilayer perceptron, radial basis function, and support vector machine, were constructed to predict the solubility of these different pharmaceutical compounds in water and different solvents. Molecular weight, melting point, temperature, and the number of each functional group in the pharmaceutical compound and organic solvents were selected as the input variables of these three different neural network models. The neural network predictions were compared with the experimental data, and the SVR-PSO model with the Average Absolute Relative Deviation equal to 0.0166 for the solubility in water and 0.0707 for solubility in organic compounds was selected as the most accurate model
Keywords :
organic compound , Solubility , Artificial Neural Network , Group Contribution , Support Vector Machine
Journal title :
Iranian Journal of Chemical Engineering (IJCHE)
Serial Year :
2019
Journal title :
Iranian Journal of Chemical Engineering (IJCHE)
Record number :
2449683
Link To Document :
بازگشت