Abstract :
The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated applying the finite element method. The mass transfer and depositions of four types of critical cigarette smoke, namely 1, 3-butadiene, acrolein, acetaldehyde and carbon monoxide (CO), in a complete human-airway model (from mouth to B3 generation), under inhalation conditions, have been simulated. In this study, concentration distribution in inhalation is evaluated. The vapour deposition was modelled with 30 and 80 L.min-1 volumetric flow rates. Therefore, a two-dimensional model of human airway from the mouth to generation B3 was reconstructed. Then, for simulating the mass transfers and deposition fraction, the low-Reynolds-number (LRN) k–ω turbulence equation was used.
Keywords :
Lung airway , Cigarette smoke , Nano , particle , Mass transfers , Deposition