Title of article :
A new Sparse Coding Approach for Human Face and Action Recognition
Author/Authors :
Nikpour ، Mohsen - Babol Noushirvani University of Technology , Karami-Mollaei ، Mohammad Reza - Babol University of Technology , Ghaderi ، Reza - Shahid Beheshti University of Tehran
Abstract :
Sparse coding is an unsupervised method which learns a set of overcomplete bases to represent data such as image, video and etc. In the cases where we have some similar images from the different classes, using the sparse coding method the images may be classified into the same class and devalue classification performance. In this paper, we propose an Affine Graph Regularized Sparse Coding approach for resolving this problem. We apply the sparse coding and graph regularized sparse coding approaches by adding the affinity constraint to the objective function to improve the recognition rate. Several experiments has been done on wellknown face datasets such as ORL and YALE. The first experiment has been done on ORL dataset for face recognition and the second one has been done on YALE dataset for face expression detection. Both experiments have been compared with the basic approaches for evaluating the proposed method. The simulation results show that the proposed method can significantly outperform previous methods in face classification. In addition, the proposed method is applied to KTH action dataset and the results show that the proposed sparse coding approach could be applied for action recognition applications too.
Keywords :
Sparse Coding , Manifold Learning , Graph Regularization , Image Classification
Journal title :
Journal of Information Systems and Telecommunication
Journal title :
Journal of Information Systems and Telecommunication