Title of article :
From the Lorentz Transformation Group in PseudoEuclidean Spaces to Bigyrogroups
Author/Authors :
Ungar ، Abraham A. North Dakota State University
Pages :
44
From page :
229
To page :
272
Abstract :
‎The Lorentz transformation of order $(m=1,n)$‎, ‎$ninNb$‎, ‎is the wellknown ‎Lorentz transformation of special relativity theory‎. ‎It is a transformation of timespace coordinates of the ‎pseudoEuclidean space $Rb^{m=1,n}$ of one time dimension and ‎$n$ space dimensions ($n=3$ in physical applications)‎. ‎A Lorentz transformation without rotations is called a {it boost}‎. ‎Commonly‎, ‎the special relativistic boost is ‎parametrized by a relativistically admissible velocity parameter $vb$‎, ‎$vbinRcn$‎, ‎whose domain is the $c$ball $Rcn$ of all ‎relativistically admissible velocities‎, ‎$Rcn={vbinRn:|vb| lt;c}$‎, ‎where the ambient space $Rn$ is the ‎Euclidean $n$space‎, ‎and $c gt;0$ is an arbitrarily fixed ‎positive constant that represents the vacuum speed of light‎. ‎The study of the Lorentz transformation composition law in terms of ‎parameter composition reveals that the group structure of the ‎Lorentz transformation of order $(m=1,n)$ induces a gyrogroup and ‎a gyrovector space structure that regulate ‎the parameter space $Rcn$‎. ‎The gyrogroup and gyrovector space structure ‎of the ball $Rcn$‎, ‎in turn‎, ‎form the algebraic setting for the BeltramiKlein ball model ‎of hyperbolic geometry‎, ‎which underlies the ball $Rcn$‎. ‎The aim of this article is to extend the study of the ‎Lorentz transformation of order $(m,n)$ from $m=1$ and $nge1$ to ‎all $m,ninNb$‎, ‎obtaining algebraic structures called ‎a {it bigyrogroup} and a {it bigyrovector space}‎. ‎A bigyrogroup is ‎a gyrogroup each gyration of which is a pair of ‎a left gyration and a right gyration‎. ‎A bigyrovector space is constructed from a bigyrocommutative bigyrogroup ‎that admits a scalar multiplication‎.
Journal title :
Mathematics Interdisciplinary Research
Serial Year :
2016
Journal title :
Mathematics Interdisciplinary Research
Record number :
2452881
Link To Document :
بازگشت