Title of article :
Special Subgroups of Gyrogroups: Commutators, Nuclei and Radical
Author/Authors :
Suksumran ، Teerapong - North Dakota State University
Pages :
16
From page :
53
To page :
68
Abstract :
‎A gyrogroup is a nonassociative grouplike structure modelled on the ‎space of relativistically admissible velocities with a binary ‎operation given by Einstein’s velocity addition law‎. ‎In this ‎article‎, ‎we present a few of groups sitting inside a gyrogroup G‎, ‎including the commutator subgyrogroup‎, ‎the left nucleus‎, ‎and the ‎radical of G‎. ‎The normal closure of the commutator subgyrogroup‎, ‎the left nucleus‎, ‎and the radical of G are in particular normal ‎subgroups of G‎. ‎We then give a criterion to determine when a ‎subgyrogroup H of a finite gyrogroup G‎, ‎where the index ‎$[Gcolon H]$ is the smallest prime dividing |G|‎, ‎is normal in G‎.
Journal title :
Mathematics Interdisciplinary Research
Serial Year :
2016
Journal title :
Mathematics Interdisciplinary Research
Record number :
2452884
Link To Document :
بازگشت