Title of article :
Strongly noncosingular modules
Author/Authors :
ALAGOZ ، Y. - İzmir Institute of Technology , DURGUN ، Y. - Bitlis Eren University
Abstract :
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingular R-modules; (3) absolutely coneat modules are strongly noncosingular if and only if R is a right max ring and injective modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective modules coincides with the class of strongly noncosingular R-modules.
Keywords :
coclosed submodules , (non) cosingular modules , coatomic modules
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society