Title of article :
On normalizers of maximal subfields of division algebras
Author/Authors :
Motiee ، M. - ‎Babol Noshirvani University of Technology‎
Pages :
6
From page :
2051
To page :
2056
Abstract :
‎Here‎, ‎we investigate a conjecture posed by Amiri and Ariannejad claiming‎ ‎that if every maximal subfield of a division ring D has trivial normalizer‎, ‎then D is commutative‎. ‎Using Amitsur classification of‎ ‎finite subgroups of division rings‎, ‎it is essentially shown that if‎ ‎D is finite dimensional over its center then it contains a maximal‎ ‎subfield with non-trivial normalizer if and only if D∗ contains a‎ ‎non-abelian soluble subgroup‎. ‎This result generalizes a theorem of‎ ‎Mahdavi-Hezavehi and Tignol about cyclicity of division algebras of prime index.
Keywords :
Division algebras , cyclic algebras , soluble groups
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2017
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2456219
Link To Document :
بازگشت