Title of article :
INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL WITH S-FOLD ZEROS AT THE ORIGIN
Author/Authors :
Khojastehnezhad ، E. - ‎University of Semnan‎ , Bidkham ، M. - ‎University of Semnan‎
Pages :
15
From page :
2153
To page :
2167
Abstract :
‎Let p(z) be a polynomial of degree n and for a complex number α‎, ‎let Dαp(z)=np(z)+(α−z)p′(z) denote the polar derivative of the polynomial p(z) with respect to α‎. ‎Dewan et al proved‎ ‎that if p(z) has all its zeros in |z|≤k, (k≤‎‎1), with s-fold zeros at the origin then for every‎ ‎α∈C with |α|≥k‎,‎‎max|z|=1|Dαp(z)|≥‎‎(n+sk)(|α|−k)1+kmax|z|=1|p(z)|‎.‎In this paper‎, ‎we obtain a refinement‎ ‎of above inequality‎. ‎Also as an application of our result‎, ‎we extend some inequalities for‎ ‎polar derivative of a polynomial of degree n which‎ ‎does not vanish in |z| k‎, ‎where k≥1‎, ‎except s-fold zeros at the origin‎.
Keywords :
Polynomial , inequality , maximum modulus , polar derivative , restricted zeros
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2017
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2456243
Link To Document :
بازگشت