Title of article :
Fuzzy Kalman Filtering for 3-D Lagrangian Particle Tracking using Blob Detection
Author/Authors :
Rezig, S LTDS, Ecole d’ingénieurs de Saint-Etienne (ENISE), Saint-Etienne, France , Toscano, R LTDS, Ecole d’ingénieurs de Saint-Etienne (ENISE), Saint-Etienne, France , Rusaouën, G CETHIL, Institut National des Sciences Appliquées, Lyon, France , Lozano, V LTDS, Ecole d’ingénieurs de Saint-Etienne (ENISE), Saint-Etienne, France
Pages :
6
From page :
207
To page :
212
Abstract :
3-D Lagrangian Particle Tracking (3DLPT) is becoming widely used to characterize the convective indoor air movements in large scale spaces. The need to implement a robust algorithm led us to develop a multi-scale based approach to detect features (Helium filled soap bubbles). On the other hand, the particle tracking is another challenging problem. To this end, a new tracking algorithm based on fuzzy Kalman filtering is proposed in this paper. The Kalman filter is used to optimally estimate the new position of the particles based on their actual position. In our approach, the initial particle positions are represented with multivariate fuzzy sets.
Keywords :
Fuzzy logic , Kalman filtering , Temporal tracking , Particle detection , Indoor airflow , 3D PTV
Journal title :
Astroparticle Physics
Serial Year :
2016
Record number :
2466588
Link To Document :
بازگشت