Title of article :
An Investigation of Air Flow and Thermal Comfort of Modified Conventional Car Cabin using Computational Fluid Dynamics
Author/Authors :
Ibrahim, S Department of Mechanical Engineering - Noorul Islam Centre for Higher Education, Kumaracoil, Thuckaly, Tamil Nadu, India , Mehta, R. C Faculty of Aeronautical and Space Technology - Noorul Islam Centre for Higher Education, Kumaracoil, Thuckaly, Tamil Nadu, India
Abstract :
Air conditioning is widely used in many areas to reduce the heat and humidity of the work place and to
maintain a room temperature for thermal stability and physical ability to perform various tasks.
Computational Fluid Dynamics (CFD) is based on the numerical solutions of the fundamental governing
equations of fluid dynamics namely the continuity, momentum and energy equations. Computerized fluent
mechanics is one of the increasing paradigm in the air flow simulation in vehicle designs. The design
optimization of vehicle can offer better efficiency in cabin surface as well as aerodynamic. In vehicles, air
conditioning tends to offer efficient thermal conditioning and air circulation inside the cabin for passenger
comfort from different climate variation. Almost all the automobiles available in the market are fitted with
air-conditioning systems. The manufacturers focus clearly on the AC system for a wide variety of climates.
As technology advances, AC system is also adhering major advancements. In general, automobile airconditioning
systems are designed to provide comfort for the driver and the passengers during a journey. The
conventional electrical-driven compression systems are widely used in almost all of the automobiles today.
An air-conditioner is operated to make a hot and humid passenger compartment a more comfortable
environment. However, with the improvement in vehicle fuel economy, the allowable power consumption for
the air-conditioner has been decreasing, in relation to the overall power consumption of the vehicle. The
internal temperature-humidity conditions are an essential factor for the comfort and health of passengers, and
also for the safety of drivers. In this research, the air conditioning inside vehicle cabin is analyzed. The
objective of the research is to develop an air depression design inside the top surfaces of the rear cabin. The
optimal flow of air inside cabin increases the thermal comfort of the vehicle. The proposed cabin depression
design inside the rear top surfaces are analyzed under thermal variation and airflow circulation inside the
cabin. The Ansys fluent tool is utilized in this paper to evaluate the variation of air flow and the temperature
inside the passenger vehicle cabin respectively. From the research analysis, the proposed evaluation of the
depression design is more optimal for air conditioning in budgetary small passenger vehicles.
Keywords :
ANSYS Fluent , Vehicle cabin , Temperature , Air duct , Humidity , Air conditioning , Automobile
Journal title :
Astroparticle Physics