Other language title :
مساله پيدا كردن ٢- (k; l)- هسته روي درختهاي با وزن حقيقي
Title of article :
On the finding 2-(k,l)-core of a tree with arbitrary real weight
Author/Authors :
Ashkezari, S. M Shahrood University of Technology - University Blvd, Shahrood , Fathali, J Shahrood University of Technology - University Blvd, Shahrood
Abstract :
Let T = (V, E) be a tree with | V |= n. A 2-(k, l)-core of T is two subtrees with at most k leaves and with a diameter of at most l, which the sum of the distances from all vertices to these subtrees is minimized. In this paper, we first investigate the problem of finding 2-(k, l)-core on an unweighted tree and show that there exists a solution that none of (k, l)-cores is a vertex. Also in the case that the sum of the weights of vertices is negative, we show that one of (k, l)-cores is a single vertex. Then an algorithm for finding the 2-(k, l)-core of a tree with the pos/neg weight is presented.
Farsi abstract :
فرض كنيد( T = (V;E درختي شامل n راس باشد. يك 2- (k; l)-هسته از درختT شامل دو زير درخت مجزا از T مي باشد كه هر يك از آنها حداكثر داراي T برگ و حداكثر قطر l هستند، همچنين مجموع فاصله تمام رئوس درخت تا اين دو زيردرخت كمينه است. در اين مقاله در ابتدا به بررسي مساله پيدا كردن 2- (k; l)- هسته روي درختي كه در آن وزن تمام رئوس يكسان است مي پردازيم و نشان مي دهيم جوابي براي اين مساله وجود دارد كه هيچ يك از هسته ها يك راس تنها نيست. سپس الگوريتمي براي پيدا كردن 2- (k; l)- هسته روي درختهايي كه وزن رئوس آنها مي تواند مثبت يا منفي باشد، ارائه مي دهيم.
Keywords :
Core , Facility location , Median subtree , Semi-obnoxious
Journal title :
Astroparticle Physics