Other language title :
مطالعه عددي مسأله غير خطي كوشي و معادله نيويل-وايتهد با روش شبه درونياب بي-اسپلاين مكعبي
Title of article :
Numerical study of the nonlinear Cauchy diusion problem and Newell-Whitehead equation via cubic B-spline quasi-interpolation
Author/Authors :
Aminikhah, H Department of Applied Mathematics - School of Mathematical Sciences - University of Guilan, Rasht , Alavi, J. Department of Applied Mathematics - School of Mathematical Sciences - University of Guilan, Rasht
Pages :
10
From page :
63
To page :
72
Abstract :
In this article, a numerical approximation to the solution of the Newell- Whitehead equation (NWE) and Cauchy problem of ill-posed non-linear dif- fusion equation have been studied. The presented scheme is obtained by using the derivative of the cubic B-spline quasi-interpolation (BSQI) to ap- proximate the spatial derivative of the dependent variable and rst order forward dierence to approximate the time derivative of the dependent vari- able. Some numerical experiments are provided to illustrate the method. The results of numerical experiments are compared with analytical solutions. The main advantage of the scheme is that the algorithm is very simple and very easy to implement.
Farsi abstract :
اين مقاله به مطالعه يك تقريب عددي از معادله نيويل-وايتهد و معادله بدوضع انتشار كوشي مي پردازد. در طرح ارائه شده از مشتق بي-اسپلاين شبه درونياب براي تقريب مشتق متغيرهاي وابسته و از تفاضل پيشرو مرتبه اول براي تقريب مشتق زمان استفاده مي شود. مثال هايي براي تشريح روش بيان شده و نتايج عددي مثال ها با جواب هاي دقيق مقاسبه شده اند. مزيت اصلي اين روش در الگوريتم و پياده سازي ساده آن است.
Keywords :
B-spline quasi-interpolation , convection-diffusion equation , dif- ference schemes
Journal title :
Astroparticle Physics
Serial Year :
2015
Record number :
2467908
Link To Document :
بازگشت