Author/Authors :
Ameur, H Department of Technology - Institute of Science and Technology - University Center Ahmed Salhi of Naâma (Ctr Univ Naâma), Algeria
Abstract :
Three dimensional flows of complex non-Newtonian fluids in sudden expending pipes are numerically
investigated in this paper. The distribution channels have one or multiple inlet pipes and one outlet pipe. The
working fluids have a shear thinning behavior modeled by the Ostwald De Waele law. The effects of different
parameters on the flow fields and pressure drop are explored. It concerns the effect of Reynolds number Re
(from 0.1 to 600), power law index n (from 0.4 to 1), number of branching channels (nb = 1, 2, 3 and 4),
spacing between the branching channels (l/D = 0.1, 0.2, 0.3 and 0.4) and the expansion ratio (d/D = 0.2, 0.35,
0.5, 0.6 and 0.8). Three-dimensional complex flows were observed in the downstream expansion for such
multiple branching systems, especially when the spacing l/D is small, where an asymmetry of flows is
observed and a third recirculation loop is formed. A considerable increase in pressure drop is found with the
rise of Reynolds number, with increased power law index and decreased expansion ratio. However, only a
slight increase is observed with decreased spacing ratio and it remained almost the same with increased
number of branching channels.
Keywords :
Vortex , Pressure drop , Shear thinning fluids , Sudden expansion , Branching channels