Title of article :
A new subclass of harmonic mappings with positive coefficients
Author/Authors :
Haghighi ، A. R. - Technical and Vocational University (TVU) , Asghary ، N. - Islamic Azad University, Central Tehran Branch , Sedghi ، A. - Islamic Azad University, Central Tehran Branch
Pages :
7
From page :
159
To page :
165
Abstract :
‎Complexvalued harmonic functions that are univalent and‎ ‎sensepreserving in the open unit disk $U$ can be written as form‎ ‎$f =h+bar{g}$‎, ‎where $h$ and $g$ are analytic in $U$‎. ‎In this paper‎, ‎we introduce the class $S_H^1(beta)$‎, ‎where $1 lt;betaleq 2$‎, ‎and‎ ‎consisting of harmonic univalent function $f = h+bar{g}$‎, ‎where $h$ and $g$ are in the form‎ ‎$h(z) = z+sumlimits_{n=2}^infty |a_n|z^n‎$ ‎and ‎‎$‎g(z) =‎sumlimits_{n=2}^infty |b_n|bar z^n$‎ for which‎ ‎$$mathrm{Re}left{z^2(h’’(z)+g’’(z))‎ +2z(h’(z)+g’(z))(h(z)+g(z))(z1)right} lt;beta.$$‎ It is shown that the members of this class are convex and starlike‎. ‎We obtain distortions bounds extreme point for functions belonging to this class‎, ‎and we also show this class is closed under‎ convolution and convex combinations‎.
Keywords :
Convex combinations , extreme points , harmonic starlike functions , harmonic univalent functions
Journal title :
Journal of Linear and Topological Algebra
Serial Year :
2019
Journal title :
Journal of Linear and Topological Algebra
Record number :
2469886
Link To Document :
بازگشت