Title of article :
Ring endomorphisms with nil-shifting property
Author/Authors :
Ahmed ، C. A. K. - University of Zakho , Salim ، R. T. M. - ‎University of Zakho‎
Pages :
12
From page :
191
To page :
202
Abstract :
Cohn called a ring $R$ is reversible if whenever $ab = 0,$ then $ba = 0$ for $a,bin R.$ The reversible property is an important role in noncommutative ring theory‎. ‎Recently‎, ‎AbdulJabbar et al‎. ‎studied the reversible ring property on nilpotent elements‎, ‎introducing‎ the concept of commutativity of nilpotent elements at zero (simply‎, ‎a CNZ ring)‎. ‎In this paper‎, ‎we extend the CNZ property of a ring as follows‎: ‎Let $R$ be a ring and $alpha$ an endomorphism of $R$‎, ‎we say that $ R $ is right (resp.‎, ‎left) $alpha$nilshifting ring if whenever $ aalpha(b) = 0 $ (resp.‎, ‎$alpha(a)b = 0$) for nilpotents $a,b$ in $R$‎, ‎$ balpha(a) = 0 $ (resp.‎, ‎$ alpha(b)a= 0) $‎. ‎The characterization of $alpha$nilshifting rings and their related properties are investigated‎.
Keywords :
CNZ ring , reversible ring , matrix ring , polynomial ring
Journal title :
Journal of Linear and Topological Algebra
Serial Year :
2019
Journal title :
Journal of Linear and Topological Algebra
Record number :
2469890
Link To Document :
بازگشت