Title of article :
Non-additive Lie centralizer of infinite strictly upper triangular matrices
Author/Authors :
Hadj ، D. A. Aiat - Centre Regional des Metiers d Education et de Formation (CRMEF)
Pages :
5
From page :
251
To page :
255
Abstract :
‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a nonadditive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})$‎. ‎We prove that $f(X)=lambda X$‎, ‎where $lambda in mathcal{F}$‎.
Keywords :
Lie centralizer , strictly upper triangular matrices , commuting map
Journal title :
Journal of Linear and Topological Algebra
Serial Year :
2019
Journal title :
Journal of Linear and Topological Algebra
Record number :
2469898
Link To Document :
بازگشت