Title of article :
Non-additive Lie centralizer of infinite strictly upper triangular matrices
Author/Authors :
Hadj ، D. A. Aiat - Centre Regional des Metiers d Education et de Formation (CRMEF)
Abstract :
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a nonadditive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})$. We prove that $f(X)=lambda X$, where $lambda in mathcal{F}$.
Keywords :
Lie centralizer , strictly upper triangular matrices , commuting map
Journal title :
Journal of Linear and Topological Algebra
Journal title :
Journal of Linear and Topological Algebra