Title of article :
Physico‑chemical, microbial and phytotoxicity evaluation of composts from sorghum, finger millet and soybean straws
Author/Authors :
Jagadabhi ، P. S International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Wani ، S. P International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Kaushal ، M International Institute of Tropical Agriculture (IITA) , Patil ، M International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Vemula ، A. K International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , Rathore ، A International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
Pages :
15
From page :
279
To page :
293
Abstract :
Purpose Composting is an environmentally sustainable alternative for bioconversion of agricultural residues into a nutrientrich product that can enhance soil fertility/microbial diversity and thereby improve agricultural productivity. The goal of the current study was to evaluate the decomposition pattern of the agro-residues and assess the maturity and phytotoxicity of the composts obtained using physico-chemical, microbial and statistical analyses. The study also attempted to determine a threshold germination index (GI) to serve as a maturity index for the composts by conducting seed germination assays with tomato, chickpea and soybean seeds. Methods Three agricultural residues/straws of Eleusine coracana (finger millet), Sorghum bicolor (sorghum) and Glycine max (soybean) were subjected to aerobic composting for a period of 60 days to study the impact of saw dust on the decomposition pattern and the ultimate compost quality/characteristics. Results The results showed efficient decomposition pattern of the agricultural residues characterized by high temperature profiles (up to 70 °C), high microbial activity, a sharp decrease in C/N ratio of the composting materials, i.e., from an initial 41–61 to final 10–17. Conclusions Statistical evaluation of seed germination assays showed that only the compost obtained from sorghum straw + saw dust was mature and free from any phytotoxicity as all the tested seeds showed higher and statistically significant GIs. It was difficult to attribute a single threshold GI value to indicate maturity of compost and could not further be applied to different types of composts as different seeds responded differently to the same compost.
Keywords :
Straw , Compost , Phytotoxicity , Maturity , Germination index (GI) , Seed germination
Journal title :
International Journal of Recycling of Organic Waste in Agriculture
Serial Year :
2019
Journal title :
International Journal of Recycling of Organic Waste in Agriculture
Record number :
2472257
Link To Document :
بازگشت