Title of article :
RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH
Author/Authors :
SCHIN ، SEUNG WON Seoul Science High School , KI ، DOHYEONG Seoul Science High School , CHANG ، JAEWON Seoul Science High School , KIM ، MIN JUNE Seoul Science High School
Pages :
13
From page :
37
To page :
49
Abstract :
Using the fixed point method, we prove the generalized Hyers -Ulam stability of the following quadratic functional equations cf (sum^n_{ i=1} x_i) + sum^n_{ j=2} f (sum^n_{ i=1} x_i (n + c 1)x_j)= (n + c 1)(f(x_1) + c sum^n _{i=2} f(x_i) + sum^n_{ i j,j=3} (sum^{n1}_{ i=2} f(x_i x_j) ), Q(sum^n _{i=1} d_ix_i ) + sum_{1≤i≤ n} d_id_jQ(x_i x_j) =(sum^n_{ i=1} d_i)(sum^n_{ i=1} d_iQ(x_i) in random Banach spaces.
Keywords :
random Banach space , fixed point , quadratic functional equation , generalized Hyers , Ulam stability
Journal title :
Journal of Nonlinear Science and Applications
Serial Year :
2011
Journal title :
Journal of Nonlinear Science and Applications
Record number :
2474693
Link To Document :
بازگشت