Title of article :
Asymptotic Behavior of Neutral Stochastic Partial Functional Integro-Differential Equations Driven by a Fractional Brownian Motion
Author/Authors :
Caraballo ، Tomas - Universidad de Sevilla , Diop ، Mamadou Abdoul - Universite Gaston Berger de Saint-Louis , Ndiaye ، Abdoul Aziz - Universite Gaston Berger de Saint-Louis
Pages :
15
From page :
407
To page :
421
Abstract :
This paper deals with the existence, uniqueness and asymptotic behavior of mild solutions to neutral stochastic delay functional integrodifferential equations perturbed by a fractional Brownian motion BH, with Hurst parameter (H \in ( \frac{1}{2} , 1)). The main tools for the existence of solution is a fixed point theorem and the theory of resolvent operators developed in Grimmer [R. Grimmer, Trans. Amer. Math. Soc., 273 (1982), 333349.], while a Gronwalltype lemma plays the key role for the asymptotic behavior. An example is provided to illustrate the results of this work.
Keywords :
Resolvent operators , Wiener process , Mild solutions , Fractional Brownian motion , Exponential decay of solutions , C0 , semigroup
Journal title :
Journal of Nonlinear Science and Applications
Serial Year :
2014
Journal title :
Journal of Nonlinear Science and Applications
Record number :
2475482
Link To Document :
بازگشت