Title of article :
Positive solutions for Caputo fractional differential equations involving integral boundary conditions
Author/Authors :
Wang ، Yong - Jiangnan University , Yang ، Yang - Jiangnan University
Pages :
11
From page :
99
To page :
109
Abstract :
In this work we study integral boundary value problem involving Caputo differentiation [ begin{cases} ^c D^q_t u(t)= f(t,u(t)) 0 t 1,alpha u(0)\beta u(1)=int^1_0 h(t)u(t)dt, gamma u (0)delta u (1)int^1_0 g(t)u(t)dt, end{cases} ] where (alpha,beta,gamma,delta) are constants with (alpha beta 0,gamma delta 0, f\in C([0,1]times mathbb{R}^+mathbb{R}), g,h\in C([0,1],mathbb{R}^+)) and ( ^c D^q_t) is the standard Caputo fractional derivative of fractional order (q(1 q 2)). By using some fixed point theorems we prove the existence of positive solutions.
Keywords :
Caputo fractional boundary value problem , fixed point theorem , positive solution
Journal title :
Journal of Nonlinear Science and Applications
Serial Year :
2015
Journal title :
Journal of Nonlinear Science and Applications
Record number :
2475497
Link To Document :
بازگشت