Title of article :
Multivariate contraction mapping principle in Menger probabilistic metric spaces
Author/Authors :
Guan ، Jinyu - Hebei North University , Tang ، Yanxia - Hebei North University , Xu ، Yongchun - Hebei North University , Su ، Yongfu - Tianjin Polytechnic University
Abstract :
The purpose of this paper is to prove the multivariate contraction mapping principle of N-variables mappings in Menger probabilistic metric spaces. In order to get the multivariate contraction mapping principle, the product spaces of Menger probabilistic metric spaces are subtly defined which is used as an important method for the expected results. Meanwhile, the relative iterative algorithm of the multivariate fixed point is established. The results of this paper improve and extend the contraction mapping principle of single variable mappings in the probabilistic metric spaces.
Keywords :
Contraction mapping principle , probabilistic metric spaces , product spaces , multivariate fixed point
Journal title :
Journal of Nonlinear Science and Applications
Journal title :
Journal of Nonlinear Science and Applications