Title of article :
Superstability of Kannappan s and Van vleck s functional equations
Author/Authors :
Keltouma ، Belfakih - University Ibn Zohr , Elhoucien ، Elqorachi - University Ibn Zohr , Rassias ، Themistocles M. - National Technical University of Athens, Zofrafou Campus , Ahmed ، Redouani - University Ibn Zohr
Pages :
22
From page :
894
To page :
915
Abstract :
In this paper, we prove the superstability theorems of the functional equations µ(y)f(xσ(y)z0) ± f(xyz0) = 2f(x)f(y), x, y ∈ S, µ(y)f(σ(y)xz0) ± f(xyz0) = 2f(x)f(y), x, y ∈ S, where S is a semigroup, σ is an involutive morphism of S, and µ : S → C is a bounded multiplicative function such that µ(xσ(x)) = 1 for all x ∈ S, and z0 is in the center of S.
Keywords :
Hyers , Ulam stability , semigroup , d’Alembert’s equation , Van Vleck’s equation , Kannappan’s equation , involution , automorpnism , multiplicative function
Journal title :
Journal of Nonlinear Science and Applications
Serial Year :
2018
Journal title :
Journal of Nonlinear Science and Applications
Record number :
2477000
Link To Document :
بازگشت