Title of article :
Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel
Author/Authors :
Morales-Delgado ، V. F. - Universidad Autonoma de Guerrero , Gomez-Aguilar ، J. F. CONACyT-Tecnologico Nacional de Mexico/CENIDET , Taneco-Hernandez ، M. A. - Universidad Autonoma de Guerrero , Escobar-Jimenez ، R. F. Tecnologico Nacional de Mexico/CENIDET , Olivares-Peregrino ، V. H. Tecnologico Nacional de Mexico/CENIDET
Abstract :
In this paper, we analyze the fractional modeling of the giving up the smoking using the definitions of Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives. Applying the homotopy analysis method and the Laplace transform with polynomial homotopy, the analytical solution of the smoking dynamics has obtained. Furthermore, using an iterative scheme by the Laplace transform, and the Atangana-Baleanu fractional integral, special solutions of the model are obtained. Uniqueness and existence of the solutions by the fixed-point theorem and Picard-Lindelof approach are studied. Finally, some numerical simulations are carried out for illustrating the results obtained.
Keywords :
Smoking model , Liouville , Caputo fractional derivative , Atangana , Baleanu fractional derivative , Laplace transform , homotopy method
Journal title :
Journal of Nonlinear Science and Applications
Journal title :
Journal of Nonlinear Science and Applications