Title of article :
PERFORMANCE-BASED OPTIMIZATION an‎d SEISMIC COLLAPSE SAFETY ASSESSMENT OF STEEL MOMENT FRAMES
Author/Authors :
Danesh, M Department of Civil Engineering - Urmia University, Urmia , Gholizadeh, S Department of Civil Engineering - Urmia University, Urmia , Gheyratmand, C Department of Civil Engineering - Urmia University, Urmia
Pages :
16
From page :
483
To page :
498
Abstract :
The main aim of the present study is to optimize steel moment frames in the framework of performance-based design and to assess the seismic collapse capacity of the optimal structures. In the first phase of this study, four well-known metaheuristic algorithms are employed to achieve the optimization task. In the second phase, the seismic collapse safety of the obtained optimal designs is evaluated by conducting incremental dynamic analysis and generating fragility curves. Three illustrative examples including 3-, 6-, and 12-story steel moment frames are presented. The numerical results demonstrate that all the performance-based optimal designs obtained by the metahuristic algorithms are of acceptable collapse margin ratio.
Keywords :
structural optimization , performance-based design , incremental dynamic analysis , collapse margin ratio , steel moment frame
Journal title :
Astroparticle Physics
Serial Year :
2019
Record number :
2491143
Link To Document :
بازگشت