Other language title :
پيش بيني و بهينه سازي ويژگي هاي بيوديزل ماهي با استفاده از خواص دي الكتريك
Title of article :
Prediction and Optimization of Fish Biodiesel Characteristics Using Permittivity Properties
Author/Authors :
Zarein, M Department of Mechanical and Biosystems Engineering - Tarbiat Modares University, Tehran, Islamic Republic of Iran , Khoshtaghazam M.H Department of Mechanical and Biosystems Engineering - Tarbiat Modares University, Tehran, Islamic Republic of Iran , Ghobadian, B Department of Mechanical and Biosystems Engineering - Tarbiat Modares University, Tehran, Islamic Republic of Iran , Ameri Mahabadi, H Department of Electrical Engineering - University of Malaya (UM), Kuala Lumpur, Malaysia
Abstract :
The purpose of this research was to predict and optimize the fish biodiesel characteristics
using its permittivity properties. The parameters of biodiesel permittivity properties such
as έ, dielectric constant, and ε″, loss factor at microwave frequencies of 434, 915, and
2,450 MHz, were used as input variables. The fish biodiesel characteristics, as Fatty Acid
Methyl Ester (FAME) content and flash point at three different levels of reaction time 3,
9, and 27 min and catalyst concentrations 1, 1.5, and 2% w woil
-1, were selected as output
parameters for the models. Linear Regression (LR), the Multi-Layer Perceptron (MLP),
and the Radial Basis Function (RBF) as the methods of Artificial Neural Networks
(ANN), and the response surface methodology were compared for prediction and
optimization of FAME content and flash point. A comparison of the results showed that
the RBF recorded higher coefficient of determination at frequency of 2,450 MHz as 0.999
and 0.988 and lower root mean square error as 0.009 and 0.023 for FAME content and
flash point, respectively. The optimum condition was obtained using RSM by FAME
content of 89.88% and flash point of 152.7°C with desirability of 0.998.
Farsi abstract :
هدف از اين تحقيق، پيش بيني و بهينه سازي ويژگي هاي بيوديزل ماهي با استفاده از خواص دي الكتريك آن مي باشد. متغيرهاي خواص دي الكتريك بيوديزل ( ثابت دي الكتريكي و "ε فاكتور اتلاف) در فركانس هاي مايكروويو (434، 915 و MHz 2450) به عنوان متغيرهاي ورودي مورد استفاده قرار گرفت. ويژگيهاي بيوديزل ماهي، محتواي متيل استر اسيد چرب (FAME) و نقطه اشتعال (FP) در سه سطح مختلف زمان واكنش (3، 9 و 27 دقيقه) و غلظت كاتاليزور (1، 1/5 و w / woil % 2) به عنوان متغيرهاي خروجي مدل در نظر گرفته شد. رگرسيون خطي (LR)، روش هاي شبكه عصبي مصنوعي، پرسپترون چند لايه (MLP) و تابع پايه شعاعي (RBF) و روش سطح پاسخ جهت پيش بيني و بهينه سازي محتواي FAME و نقطه اشتعال مورد ارزيابي قرار گرفت. مقايسه نتايج نشان داد كه RBF بيشترين ضريب تبيين در فركانس MHz 2450 به ميزان 0/999 و 0/988 و پايين ترين ريشه ميانگين مربعات خطا به ميزان 0/009 و 0/023 به ترتيب براي محتواي FAME و نقطه اشتعال داشت. شرايط بهينه با استفاده از RSM براي محتواي FAME به ميزان 89/88٪
و نقطه اشتعال به ميزان C 152/7 با مطلوبيت 0/998 بدست آمد.
Keywords :
Response surface methodology , Optimum condition , Flash point , Fatty acid methyl ester content , Artificial neural network