Author/Authors :
Hashemzahi ، Amanollah Department of Biology - Faculty of Science - Ferdowsi University of Mashhad , Makhkdoumi ، Ali Department of Biology - Faculty of Science - Ferdowsi University of Mashhad , Asoodeh ، Ahmad Department of Chemistry - Faculty of Science - Ferdowsi University of Mashhad
Abstract :
The prokaryotic residents of the Tis solar saltern in the southeast of Iran on the shore of Oman Sea were investigated by the culturedependent methods. Sequencing of the PCRamplified fragments of 16S rRNA genes revealed that bacterial populations were related to Actinobacteria, Bacteroidetes, Balneolaeota, Firmicutes, and Proteobacteria. They were phylogenetically identified as members of Bacillus (35%), Aliifodinibius (15%), Longibacter (10%), Halomonas (10%), Arthrobacter (5%), Luteimonas (5%), Ornithinibacillus (5%), Rhodovibrio (5%), Staphylococcus (5%),and Tamilnaduibacter (5%). All archaeal isolates were belonged to the order Halobacteriales in the following genera: Haloferax (33%), Haloarcula (27%), Halogeometricum (11%), Halococcus (5%), Halomicroarcula (5%), Halorubrum (5%), Halostagnicola (5%), and Natronoarchaeum (5%). Semiquantitative evaluation of six hydrolytic enzymes, including amylase, cellulase, lipase, pectinase, protease, and urease among these strains, revealed that urease (47%) and amylase (41%) had the highest production frequency. The average production rates were observed for lipase (25%) and protease (30%), while the pectinase (12%) and cellulase (4%) productions were rare among these halophiles. The most potent bacterial/archaeal strains for the enzymes production were as: Longibacter/Natronoarchaeum (amylase), Bacillus/ non archaeum (cellulase), Tamilnaduibacter/ Haloferax (lipase), Bacillus/ Haloferax (pectinase), Bacillus/ Haloferax (protease), and Staphylococcus/ Halococcus (urease). This first report about the prokaryote populations of the solar salterns in Iran demonstrated its high microbial diversity and potentials for the production of industrially interesting enzymes.
Keywords :
Diversity , Hydrolytic enzymes , Solar salterns , Halophiles