Title of article :
An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
Author/Authors :
Hajihashemi, Vahid Kharazmi University, tehran , Borna ,Keivan Kharazmi University, tehran
Abstract :
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that probability density function (PDF) of MRI Images is rician because of the process of image capturing and MRI hardware. Based on the review of later works in this area, it is determined that rician denoising in wavelet domain is better. It was concluded that the remaining noise in the final output of the conventional methods of wavelet domain, is Gaussian and can be greatly reduced with a Gaussian adaptive filter. In the proposed method the histogram of input and output image difference in first step of denoising routine is using for an adaptive estimation of remained Gaussian noise in output. Based on this estimation, a Gaussian filter designed and the output image was filtered again. The results showed that the final image quality will improve considerably. Rather than visual criteria, for proving the improvement the SSIM between main and filtered image is shown. In similar situations, the proposed algorithm is always better than the others.
Farsi abstract :
ﯾﮑﯽ از ﻗﻮﯾﺘﺮﯾﻦ ﺗﮑﻨﯿﮑﻬﺎي ﻣﻄﺎﻟﻌﻪ ﺳﺎﺧﺘﺎري ﻗﺴﻤﺖ ﻫﺎي داﺧﻠﯽ ﺑﺪن ﻣﯽ ﺑﺎﺷﺪ. ﮐﯿﻔﯿﺖ ﻋﮑﺲ ﻫﺎي MRI ﺗﺤﺖ ﺗﺎﺛﯿﺮ ﻧﻮﯾﺰﻫﺎي ﻣﺨﺘﻠﻔﯽ ﻫﺴﺘﻨﺪ. ﻧﻮﯾﺰ در MRI ﻋﻤﺪﺗﺎ از ﻧﻮع ﻧﻮﯾﺰ ﺣﺮارﺗﯽ ﻣﯽ ﺑﺎﺷﺪ ﮐﻪ ﺑﻪ ﺧﺎﻃﺮ ﺣﺮﮐﺖ ذرات ﺑﺎردار در ﻓﺮﮐﺎﻧﺲ رادﯾﻮﯾﯽ ﺳﯿﻢ ﭘﯿﭻ ﺑﻪ وﺟﻮد ﻣﯽ آﯾﺪ. ﻧﻮﯾﺰ در ﺗﺼﺎوﯾﺮ MRI ﺑﺎﻋﺚ اﯾﺠﺎد ﻣﺤﺪودﯾﺖ در ﺑﺮرﺳﯽ ﻇﺎﻫﺮي ﺗﺼﺎوﯾﺮ و ﻫﻤﭽﻨﯿﻦ آﻧﺎﻟﯿﺰ اﯾﻦ ﺗﺼﺎوﯾﺮ ﺗﻮﺳﻂ ﮐﺎﻣﭙﯿﻮﺗﺮ ﻣﯽ ﺷﻮد. در اﯾﻦ ﻣﻘﺎﻟﻪ اﺑﺘﺪا اﺛﺒﺎت ﻣﯽ ﺷﻮد ﺑﺮ اﺳﺎس ﻓﺮآﯾﻨﺪ رخ داده در ﺳﺨﺖ اﻓﺰار ﻋﮑﺴﺒﺮداري ﺗﺼﻮﯾﺮ MRI، ﻧﻮﯾﺰ ﻣﻮﺟﻮد در اﯾﻦ ﺗﺼﺎوﯾﺮ از ﺗﺎﺑﻊ ﭼﮕﺎﻟﯽ اﺣﺘﻤﺎل راﯾﺴﯿﻦ ﭘﯿﺮوي ﻣﯽ ﮐﻨﺪ. ﺑﺮ اﯾﻦ اﺳﺎس و ﺑﺎ ﻣﺮور ﻣﺠﻤﻮﻋﻪ ﮐﺎرﻫﺎي اﻧﺠﺎم ﺷﺪه در اﯾﻦ زﻣﯿﻨﻪ ﻣﺸﺨﺺ ﺷﺪ ﺣﺬف ﻧﻮﯾﺰ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﺎﺑﻊ ﭼﮕﺎﻟﯽ اﺣﺘﻤﺎل راﯾﺴﯿﻦ در ﻓﻀﺎي ﻣﻮﺟﮏ ﺑﻬﺘﺮ ﺻﻮرت ﻣﯽ ﮔﯿﺮد. ﺑﺎ ﺗﺤﻠﯿﻞ ﻫﺎي ﺻﻮرت ﮔﺮﻓﺘﻪ اﯾﻨﻄﻮر ﻧﺘﯿﺠﻪ ﮔﯿﺮي ﺷﺪ ﮐﻪ ﻧﻮﯾﺰ ﺑﺎﻗﯽ ﻣﺎﻧﺪه در ﺧﺮوﺟﯽ ﻧﻬﺎﯾﯽ روﺷﻬﺎي ﻣﺮﺳﻮم ﺣﻮزه ﻣﻮﺟﮏ، ﺑﻪ دﻟﯿﻞ ﺧﻄﺎي ﻓﯿﻠﺘﺮي ﻣﺎﻫﯿﺖ ﮔﻮﺳﯽ دارد ﮐﻪ ﻣﯽ ﺗﻮان آن را ﺑﺎ ﯾﮏ ﻓﯿﻠﺘﺮ ﺗﻄﺒﯿﻘﯽ ﮔﻮﺳﯽ ﺗﺎ ﺣﺪ زﯾﺎدي ﮐﺎﻫﺶ داد. ﺑﺮ اﺳﺎس ﻫﯿﺴﺘﻮﮔﺮام ﻫﺎي ﻣﻮﺟﻮد در ﺗﺼﺎوﯾﺮ ﺗﻔﺎﺿﻞ و ﺑﺮآورد ﺗﻄﺒﯿﻘﯽ ﻧﻮﯾﺰ ﮔﻮﺳﯽ ﻣﻮﺟﻮد در ﺗﺼﻮﯾﺮ ﺧﺮوﺟﯽ ﻧﻬﺎﯾﯽ ﯾﮏ ﻓﯿﻠﺘﺮ ﮔﻮﺳﯽ ﻃﺮاﺣﯽ و ﺑﺎ اﺳﺘﻔﺎده از آن ﺗﺼﻮﯾﺮ ﺧﺮوﺟﯽ ﺣﺬف ﻧﻮﯾﺰ ﺷﺪه دوﺑﺎره ﻓﯿﻠﺘﺮ ﮔﺮدﯾﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﺗﺼﻮﯾﺮ ﻧﻬﺎﯾﯽ از ﻧﻈﺮ ﮐﯿﻔﯿﺖ ﺑﻬﺒﻮد ﻗﺎﺑﻞ ﻣﻼﺣﻈﻪ اي ﭘﯿﺪا ﻣﯽ ﮐﻨﺪ. ﻋﻼوه ﺑﺮ آن ﺑﺮاي اﺛﺒﺎت ﺻﺤﺖ و ﮐﺎرآﯾﯽ روش ﻋﻼوه ﺑﺮ ﻣﻌﯿﺎر ﭼﺸﻤﯽ ﺑﺎ اﺳﺘﻔﺎده از ﻣﻌﯿﺎر SSIM ، ﺗﺼﻮﯾﺮ ﻧﻬﺎﯾﯽ ﺑﺎ ﺗﺼﻮﯾﺮ اوﻟﯿﻪ ﺑﺪون ﻧﻮﯾﺰ و ﺑﻬﺘﺮﯾﻦ ﺧﺮوﺟﯽ روﺷﻬﺎي ﻗﺒﻞ ﻣﻮرد ﻣﻘﺎﯾﺴﻪ ﻗﺮار ﮔﺮﻓﺖ و ﻧﺸﺎن داده ﺷﺪ در ﺣﺎﻟﺖ ﯾﮑﺴﺎن ﮐﯿﻔﯿﺖ ﺧﺮوﺟﯽ روش ﭘﯿﺸﻨﻬﺎدي ﻫﻤﻮاره از ﻧﺘﺎﯾﺞ ﻗﺒﻠﯽ ﺑﻬﺘﺮ ﺧﻮاﻫﺪ ﺑﻮد.
Keywords :
Adaptive Filtering , Denoising , Gaussian pdf , Magnetic Resonance Imaging , Rician pdf , Structural Similarity Index (SSIM)
Journal title :
International Journal of Engineering