Title of article :
Multiplication on double coset space L^1(Ksetminus G/H)
Author/Authors :
Fahimian ، F. Department of Pure Mathematics - Ferdowsi University of Mashhad , Kamyabi-Gol ، R. A. Department of Pure Mathematics - Center of Excellence in Analysis on Algebric Structures (CEAAS) - Ferdowsi University of Mashhad , Esmaeelzadeh ، F. Department of Mathematics - Islamic Azad university, Bojnourd Branch
Abstract :
Consider a locally compact group $G$ with two compact subgroups $H$ and $K$. Equip the double coset space $Ksetminus G/H$ with the quotient topology. Suppose that $mu$ is an $N$relatively invariant measure, on $Ksetminus G/H$. We define a multiplication on $L^1(Ksetminus G/H,mu)$ such that this space becomes a Banach algebra that possesses a left (right) approximate identity.
Keywords :
Double coset space , Convolution , Integrable function space , N , relatively invariant
Journal title :
Wavelets and Linear Algebra
Journal title :
Wavelets and Linear Algebra