Title of article :
Boundedly finite conjugacy classes of tensors
Author/Authors :
Bastos, Raimundo Departamento de Matemática - Universidade de Bras´ ılia - Brasilia-DF Brazil , Monetta, Carmine Dipartimento di Matematica - Università di Salerno - Italy
Abstract :
Let n be a positive integer and let G be a group. We denote by ν(G) a certain extension of the non-abelian tensor square G⊗G by G×G. Set T⊗(G)={g⊗h∣g,h∈G}. We prove that if the size of the conjugacy class ∣∣xν(G)∣∣≤n for every x∈T⊗(G), then the second derived subgroup ν(G)′′ is finite with n-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.
Keywords
Keywords :
structure theorems , finiteness conditions , non-abelian tensor square of groups
Journal title :
International Journal of Group Theory