Other language title :
ﮐﺎرﺑﺮد روﺷﻬﺎي ﺧﻮﺷﻪﺑﻨﺪي اﺣﺘﻤﺎﻟﯽ در ﺗﻌﯿﯿﻦ ﻣﻨﺎﻃﻖ ﮐﺎﻧﯽﺳﺎزي در ﻣﻄﺎﻟﻌﺎت اﮐﺘﺸﺎﻓﯽ ﺑﺎ ﻣﻘﯿﺎس ﻧﺎﺣﯿﻪاي
Title of article :
Application of Probabilistic Clustering Algorithms to Determine Mineralization Areas in Regional-Scale Exploration Studies
Author/Authors :
Geranian, Hamid Department of Mining Engineering - Birjand University of Technology - Birjand, Iran , Khajeh Miry, Zahra Industry - Mine & Trade Organization of South Khorasan Province - Birjand, Iran
Pages :
20
From page :
1059
To page :
1078
Abstract :
In this work, we aim to identify the mineralization areas for the next exploration phases. Thus, the probabilistic clustering algorithms due to the use of appropriate measures, the possibility of working with datasets with missing values, and the lack of trapping in local optimal are used to determine the multi-element geochemical anomalies. Four probabilistic clustering algorithms, namely PHC, PCMC, PEMC, PDBSCAN, and 4138 stream sediment samplings, are used to divide the samples into the three clusters of background, possible anomaly, and probable anomaly populations. In order to determine these anomalies, ten and eight metal elements are selected as the chalcophile and siderophile elements, respectively. The results obtained show the areas of approximately 500 and 5,000 km2 as the areas of the probable and possible anomalies, respectively. The composite geochemical anomalies of the chalcophile and siderophile elements are mostly dominant in the metamorphic-acidic-intermediate rock units and the alkaline-metamorphic-intermediate rock units of the studied area, respectively. Besides, the obtained anomalies of the four clustering algorithms also cover about 65% of the mineralized areas, all mines, and almost 60% of the alteration areas. The validity criterion of the clustering methods show more than 70% validity for the obtained anomalies. The results obtained indicate that the probabilistic clustering algorithms can be an appropriate statistical tool in the regional-scale geochemical explorations.
Farsi abstract :
ﻧﻤﻮﻧﻪﺑﺮداري از رﺳﻮﺑﺎت آﺑﺮاﻫﻪاي در ﻣﻘﯿﺎس 1:100000 و آﻧﺎﻟﯿﺰ ﭼﻨﺪ ﻋﻨﺼﺮه اﯾﻦ ﻧﻤﻮﻧﻪﻫﺎ، ﯾﮑﯽ از اﺑﺰارﻫﺎي ﻣﻬﻢ اﮐﺘﺸﺎﻓﯽ در ﻓﺎز ﺷﻨﺎﺳﺎﯾﯽ ﻣﺤﺴﻮب ﻣﯽﺷﻮد. ﻫﺪف از اﯾﻦ ﻣﻄﺎﻟﻌﺎت ﺗﻌﯿﯿﻦ ﻧﻮاﺣﯽ اﻣﯿﺪﺑﺨﺶ ﻣﻌﺪﻧﯽ ﺑﺮاي ﻓﺎزﻫﺎي ﺑﻌﺪي اﮐﺘﺸﺎف اﺳﺖ. ﺑﻨﺎﺑﺮاﯾﻦ روشﻫﺎي ﺧﻮﺷﻪﺑﻨﺪي ﮐﻪ ﻗﺎدر ﺑﻪ ﺗﻌﯿﯿﻦ آﻧﻮﻣﺎﻟﯽﻫﺎي ژﺋﻮﺷﯿﻤﯿﺎﯾﯽ ﭼﻨﺪ ﻋﻨﺼﺮه ﻫﺴﺘﻨﺪ، ﺑﺮ روشﻫﺎي ﺗﻌﯿﯿﻦ آﻧﻮﻣﺎﻟﯽ ﺗﮏ ﻋﻨﺼﺮه ﻣﯽﺗﻮاﻧﺪ ﺑﺮﺗﺮي داﺷﺘﻪ ﺑﺎﺷﺪ. روشﻫﺎي ﺧﻮﺷﻪﺑﻨﺪي اﺣﺘﻤﺎﻟﯽ ﺑﺪﻟﯿﻞ اﺳﺘﻔﺎده از ﺳﻨﺠﻪ ﻣﻨﺎﺳﺒﺘﺮ، اﻣﮑﺎن ﮐﺎر ﺑﺎ ﻣﺠﻤﻮﻋﻪي داراي دادهﻫﺎ ﮔﻤﺸﺪه و ﻋﺪم ﮔﯿﺮﮐﺮدن در ﺑﻬﯿﻨﻪ ﻣﺤﻠﯽ از روشﻫﺎي ﺧﻮﺷﻪﺑﻨﺪي اﻟﮕﻮرﯾﺘﻤﯿﮏ ﻋﻤﻠﮑﺮد ﺑﻬﺘﺮي دارﻧﺪ. ﭼﻬﺎر اﻟﮕﻮرﯾﺘﻢ ﺧﻮﺷﻪﺑﻨﺪي اﺣﺘﻤﺎﻟﯽ PCM ،PHC ، PEM و PDBSCAN ﺑﺮروي 4138 ﻧﻤﻮﻧﻪ رﺳﻮﺑﺎت آﺑﺮاﻫﻪاي ﺑﮑﺎر رﻓﺘﻪ ﺗﺎ ﻧﻤﻮﻧﻪﻫﺎ را ﺑﻪ ﺳﻪ ﺧﻮﺷﻪي ﺟﺎﻣﻌﻪ زﻣﯿﻨﻪ، ﺟﺎﻣﻌﻪ آﻧﻮﻣﺎﻟﯽ ﻣﻤﮑﻦ و ﺟﺎﻣﻌﻪ آﻧﻮﻣﺎﻟﯽ اﺣﺘﻤﺎﻟﯽ ﺗﻔﮑﯿﮏ ﮐﻨﻨﺪ. 10 ﻋﻨﺼﺮ ﻓﻠﺰي ﺑﻌﻨﻮان ﻋﻨﺎﺻﺮ ﮐﺎﻟﮑﻮﻓﯿﻞ و 8 ﻋﻨﺼﺮ ﻓﻠﺰي ﺑﻌﻨﻮان ﻋﻨﺎﺻﺮ ﺳﯿﺪروﻓﯿﻞ ﺑﺮاي ﺗﻌﯿﯿﻦ اﯾﻦ آﻧﻮﻣﺎﻟﯽﻫﺎ اﻧﺘﺨﺎب ﺷﺪهاﻧﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن دﻫﻨﺪهي ﻣﻨﺎﻃﻘﯽ ﺑﺎ وﺳﻌﺖ ﺗﻘﺮﯾﺒﯽ 500 و 5000 ﮐﯿﻠﻮﻣﺘﺮ ﻣﺮﺑﻊ ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﻌﻨﻮان ﻣﻨﺎﻃﻖ آﻧﻮﻣﺎﻟﯽ ﻣﻤﮑﻦ و اﺣﺘﻤﺎﻟﯽ اﺳﺖ. ﺑﺎ وﺟﻮد ﺷﮑﻞﻫﺎي ﻣﺘﻔﺎوت، ﻣﻮﻗﻌﯿﺖ و ﻣﺤﺪوده آﻧﻮﻣﺎﻟﯽﻫﺎ در ﻫﺮ ﭼﻬﺎر روش ﺧﻮﺷﻪﺑﻨﺪي ﯾﮑﺴﺎن اﺳﺖ. آﻧﻮﻣﺎﻟﯽﻫﺎي ژﺋﻮﺷﯿﻤﯿﺎﯾﯽ ﻋﻨﺎﺻﺮ ﮐﺎﻟﮑﻮﻓﯿﻞ ﺑﯿﺸﺘﺮﯾﻦ ارﺗﺒﺎط را ﺑﺎ ﺳﻨﮓﻫﺎي دﮔﺮﮔﻮﻧﯽ- اﺳﯿﺪي- ﺣﺪ واﺳﻂ و آﻧﻮﻣﺎﻟﯽ ﻋﻨﺎﺻﺮ ﺳﯿﺪروﻓﯿﻞ ﺑﺎ ﺳﻨﮓﻫﺎي ﺑﺎزي- دﮔﺮﮔﻮﻧﯽ- ﺣﺪ واﺳﻂ در ﻣﻨﻄﻘﻪ ﻣﻄﺎﻟﻌﺎﺗﯽ دارﻧﺪ. ﺑﻪ ﻟﺤﺎظ ﻫﻤﭙﻮﺷﺎﻧﯽ آﻧﻮﻣﺎﻟﯽﻫﺎ ﺑﺎ اﻧﺪﯾﺲﻫﺎي اﮐﺘﺸﺎﻓﯽ و ﻣﻌﺪﻧﯽ و ﻧﻘﺸﻪ آﻟﺘﺮاﺳﯿﻮنﻫﺎي ﻫﯿﺪروﺗﺮﻣﺎﻟﯽ روﺷﻬﺎي PHC و PDBSCAN ﺑﻬﺘﺮ ﻋﻤﻞ ﮐﺮدهاﻧﺪ. ﻫﻤﭽﻨﯿﻦ آﻧﻮﻣﺎﻟﯽﻫﺎي ﺑﺪﺳﺖ آﻣﺪه ﺣﺪود 65 درﺻﺪ اﻧﺪﯾﺲﻫﺎ اﮐﺘﺸﺎﻓﯽ، ﺗﻘﺮﯾﺒﺎً ﮐﻠﯿﻪي اﻧﺪﯾﺲﻫﺎي ﻣﻌﺪﻧﯽ و 60 درﺻﺪ آﻟﺘﺮاﺳﯿﻮنﻫﺎ را ﭘﻮﺷﺶ دادهاﻧﺪ. ﺷﺎﺧﺺ اﻋﺘﺒﺎرﺳﻨﺠﯽ روشﻫﺎي ﺧﻮﺷﻪﺑﻨﺪي اﻋﺘﺒﺎر ﺑﺎﻟﻎ ﺑﺮ 70 درﺻﺪ را ﺑﺮاي آﻧﻮﻣﺎﻟﯽﻫﺎي ﺑﺪﺳﺖ آﻣﺪه ﺑﺮآورد ﮐﺮدهاﻧﺪ. اﯾﻦ ﻧﺘﺎﯾﺞ ﻧﺸﺎن ﻣﯽدﻫﻨﺪ ﮐﻪ روشﻫﺎي ﺧﻮﺷﻪﺑﻨﺪي اﺣﺘﻤﺎﻟﯽ ﻣﯽﺗﻮاﻧﻨﺪ ﺑﻌﻨﻮان ﯾﮏ اﺑﺰار آﻣﺎري ﻣﻨﺎﺳﺐ در اﮐﺘﺸﺎﻓﺎت ژﺋﻮﺷﯿﻤﯿﺎﯾﯽ ﻧﺎﺣﯿﻪاي ﺑﮑﺎر روﻧﺪ.
Keywords :
Deh-Salm quadrangle , Probabilistic clustering algorithms , Composite geochemical anomaly , Geochemical potential mapping , Hydrothermal alterations
Journal title :
Journal of Mining and Environment
Serial Year :
2020
Record number :
2528006
Link To Document :
بازگشت