Other language title :
پيش بيني پتانسيل توليد زهاب اسيدي معدن از ذرات باطله هاي مس با استفاده از الگوريتم بيان ژن- مطالعه موردي
Title of article :
Prediction of Acid Mine Drainage Generation Potential of A Copper Mine Tailings Using Gene Expression Programming-A Case Study
Author/Authors :
Shokri, Behshad Jodeiri Department of Mining Engineering - Hamedan University of Technology - Hamedan, Iran , Dehghani, Hessam Department of Mining Engineering - Hamedan University of Technology - Hamedan, Iran , Shamsi, Reza Department of Mining Engineering - Hamedan University of Technology - Hamedan, Iran , Doulati Ardejani, Faramarz School of Mining - College of Engineering - University of Tehran - Tehran, Iran
Abstract :
This work presents a quantitative predicting likely acid mine drainage (AMD)
generation process throughout tailing particles resulting from the Sarcheshmeh copper
mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite
fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been
suggested by applying the gene expression programming (GEP) algorithms. For this,
after gathering an appropriate database, some of the most significant parameters such
as the tailing particle depths, initial remaining pyrite and chalcopyrite fractions, and
concentrations of bicarbonate, nitrite, nitrate, and chloride are considered as the input
data. Then 30% of the data is chosen as the training data randomly, while the validation
data is included in 70% of the dataset. Subsequently, the relationships are proposed
using GEP. The high values of correlation coefficients (0.92, 0.91, 0.86, and 0.89) as
well as the low values of RMS errors (0.140, 0.014, 150.301, and 0.543) for the
remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and
pH prove that these relationships can be successfully validated. The results obtained
also reveal that GEP can be applied as a new-fangled method in order to predict the
AMD generation process.
Farsi abstract :
در اﯾﻦ ﺗﺤﻘﯿﻖ، ﯾﮏ روش ﮐﻤﯽ ﭘﯿﺶﺑﯿﻨﯽ اﺣﺘﻤﺎل ﻓﺮآﯾﻨﺪ ﺗﻮﻟﯿﺪ زﻫﺎب اﺳﯿﺪي ﻣﻌﺪن در ذرات ﺑﺎﻃﻠﻪﻫﺎي ﻧﺎﺷﯽ از ﻣﻌﺪن ﻣﺲ ﺳﺮﭼﺸﻤﻪ ﮐﻪ در ﺟﻨﻮب اﯾﺮان ﻗﺮار دارد، اراﺋﻪ ﺷﺪه اﺳﺖ. در ﺣﻘﯿﻘﺖ، ﭼﻬﺎر راﺑﻄﻪ ﺑﺮاي ﭘﯿﺶﺑﯿﻨﯽ، ﻣﯿﺰان ﭘﯿﺮﯾﺖ ﺑﺎﻗﯽﻣﺎﻧﺪه، ﻣﯿﺰان ﮐﺎﻟﮑﻮﭘﯿﺮﯾﺖ ﺑﺎﻗﯽﻣﺎﻧﺪه، ﻏﻠﻈﺖ ﺳﻮﻟﻔﺎت و اﺳﯿﺪﯾﺘﻪ ﺑﺎ اﺳﺘﻔﺎده از روش اﻟﮕﻮرﯾﺘﻢ ﺑﯿﺎن ژن، ﭘﯿﺸﻨﻬﺎد ﺷﺪهاﻧﺪ. ﺑﺮاي ﻧﯿﻞ ﺑﻪ اﯾﻦ ﻫﺪف، ﭘﺲ از ﮔﺮدآوري ﯾﮏ ﭘﺎﯾﮕﺎه دادهاي ﻣﻨﺎﺳﺐ، ﺑﺮﺧﯽ از ﺑﺎ اﻫﻤﯿﺖ ﺗﺮﯾﻦ ﭘﺎراﻣﺘﺮﻫﺎ ﻣﺎﻧﻨﺪ ﻋﻤﻖ ﻗﺮارﮔﯿﺮي ذرات ﺑﺎﻃﻠﻪ، ﻣﯿﺰان ﭘﯿﺮﯾﺖ اوﻟﯿﻪ، ﮐﺎﻟﮑﻮﭘﯿﺮﯾﺖ اوﻟﯿﻪ و ﻧﯿﺰ ﻏﻠﻈﺖﻫﺎي ﺑﯽﮐﺮﺑﻨﺎت، ﻧﯿﺘﺮﯾﺖ، ﻧﯿﺘﺮات و ﮐﻠﺮاﯾﺪ، ﺑﻌﻨﻮان دادهﻫﺎي ورودي درﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻧﺪ. ﺳﭙﺲ، 30 درﺻﺪ از دادهﻫﺎي ورودي ﺑﺼﻮرت ﺗﺼﺎدﻓﯽ ﺟﻬﺖ آﻣﻮزش دادهﻫﺎ اﻧﺘﺨﺎب ﺷﺪﻧﺪ، در ﺣﺎﻟﯿﮑﻪ دادهﻫﺎي اﻋﺘﺒﺎرﺳﻨﺠﯽ، ﺷﺎﻣﻞ 70 درﺻﺪ ﺑﺎﻗﯽﻣﺎﻧﺪه ﭘﺎﯾﮕﺎه دادهﻫﺎ ﺑﻮدﻧﺪ
Keywords :
Gene expression programming , Acid mine drainage , Copper tailing , Pyrite , Chalcopyrite
Journal title :
Journal of Mining and Environment