Other language title :
ﻣﺸﺨﺺﺳﺎزي زونﻫﺎي دﮔﺮﺳﺎﻧﯽ ﺑﺎ روشﻫﺎي ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﻮﺟﮏ )WNN( و ﻓﺮﮐﺘﺎل ﻏﻠﻈﺖ- ﺣﺠﻢ )C-V( در زون ﻫﯿﭙﻮژن ﻧﻬﺸﺘﻪ ﻣﺲ ﭘﻮرﻓﯿﺮي، ﻣﻨﻄﻘﻪ ﺷﻬﺮﺑﺎﺑﮏ، ﺟﻨﻮب ﺷﺮق اﯾﺮان
Title of article :
Delineation of Alteration Zones Based on Wavelet Neural Network (WNN) and Concentration–Volume (C-V) Fractal Methods in the Hypogene Zone of Porphyry Copper Deposit, Shahr-e-Babak District, SE Iran
Author/Authors :
Hezarkhani, Ardeshir Department of Mining and Metallurgy Engineering - Amirkabir University of technology - Tehran, Iran , Shokouh Saljoughi, Bashir Department of Mining and Metallurgy Engineering - Amirkabir University of technology - Tehran, Iran
Abstract :
In this paper, we aim to achieve two specific objectives. The first one is to examine
the applicability of wavelet neural network (WNN) technique in ore grade estimation,
which is based on integration between wavelet theory and Artificial Neural Network
(ANN). Different wavelets are applied as activation functions to estimate Cu grade of
borehole data in the hypogene zone of porphyry ore deposit, Shahr-e-Babak district,
SE Iran. WNN parameters such as dilation and translation are fixed and only the
weights of the network are optimized during its learning process. The efficacy of this
type of network in function learning and estimation is compared with Ordinary Kriging
(OK). Secondly, we aim to delineate the potassic and phyllic alteration regions in the
hypogene zone of Cu porphyry deposit based on the estimation obtained of WNN and
OK methods, and utilize Concentration–Volume (C–V) fractal model. In this regard,
at first C–V log–log plots are generated based on the results of OK and WNN. The
plots then are used to determine the Cu threshold values of the alteration zones. To
investigate the correlation between geological model and C-V fractal results, the log
ratio matrix is applied. The results showed that, Cu values less than 1.1% from WNN
have more overlapped voxels with phyllic alteration zone by overall accuracy (OA) of
0.74. Spatial correlation between the potassic alteration zones resulted from 3D
geological modeling and high concentration zones in C-V fractal model showed that
the alteration zone has Cu values between 1.1% and 2.2% with OA of 0.72 and finally
have an appropriate overlap with Cu values greater than 2.2% with OA of 0.7.
Generally, the results showed that the WNN (Morlet activation function) with OA
greater than OK can be can be a suitable and robust tool for quantitative modeling of
alteration zones, instead of qualitative methods.
Farsi abstract :
در اﯾﻦ ﻣﻘﺎﻟﻪ، ﻣﺎ ﻗﺼﺪ دارﯾﻢ ﺑﻪ دو ﻫﺪف ﺧﺎص دﺳﺖ ﯾﺎﺑﯿﻢ. ﻧﺨﺴﺘﯿﻦ ﻫﺪف، ﺑﺮرﺳﯽ ﻗﺎﺑﻠﯿﺖ ﮐﺎرﺑﺮد ﺗﮑﻨﯿﮏ ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﻮﺟﮏ )WNN( در ﺗﺨﻤﯿﻦ ﻋﯿﺎر ﮐﺎﻧﻪ اﺳﺖ ﮐﻪ ﻣﺒﺘﻨﯽ ﺑﺮ ﺗﺮﮐﯿﺐ ﻧﻈﺮﯾﻪ ﻣﻮﺟﮏ و ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ )ANN( اﺳﺖ. ﻣﻮﺟﮏﻫﺎي ﻣﺨﺘﻠﻒ ﺑﻪ ﻋﻨﻮان ﺗﻮاﺑﻊ ﻓﻌﺎلﺳﺎزي ﺑﺮاي ﺗﺨﻤﯿﻦ ﻋﯿﺎر ﻣﺲ دادهﻫﺎي ﮔﻤﺎﻧﻪ در زون ﻫﯿﭙﻮژن ﻧﻬﺸﺘﻪ ﭘﻮرﻓﯿﺮي، ﻧﺎﺣﯿﻪ ﺷﻬﺮﺑﺎﺑﮏ، ﺟﻨﻮب ﺷﺮق اﯾﺮان ﺑﮑﺎر ﺑﺮده ﺷﺪ. ﭘﺎراﻣﺘﺮﻫﺎي WNN ﻣﺎﻧﻨﺪ اﺗﺴﺎع و اﻧﺘﻘﺎل ﺛﺎﺑﺖ ﺑﻮدﻧﺪ و ﺗﻨﻬﺎ وزنﻫﺎي ﺷﺒﮑﻪ در ﻃﻮا ﻓﺮاﯾﻨﺪ ﯾﺎدﮔﯿﺮي ﺑﻬﯿﻨﻪ ﺷﺪﻧﺪ. ﮐﺎراﯾﯽ اﯾﻦ ﻧﻮع ﺷﺒﮑﻪ در ﯾﺎدﮔﯿﺮي ﺗﺎﺑﻊ و ﺗﺨﻤﯿﻦ ﺑﺎ روش ﮐﺮﯾﺠﯿﻨﮓ ﻣﻌﻤﻮﻟﯽ )OK( ﻣﻘﺎﯾﺴﻪ ﺷﺪ. دوم، ﻣﺎ ﻗﺼﺪ دارﯾﻢ ﺗﺎ ﻧﻮاﺣﯽ دﮔﺮﺳﺎﻧﯽ ﭘﺘﺎﺳﯿﮏ و ﻓﯿﻠﯿﮏ را در زون ﻫﯿﭙﻮژن ﻧﻬﺸﺘﻪ ﻣﺲ ﭘﻮرﻓﯿﺮي ﺑﺮاﺳﺎس ﺗﺨﻤﯿﻦ ﺑﺪﺳﺖ آﻣﺪه از روشﻫﺎي WNN و OK و ﺑﺎ اﺳﺘﻔﺎده از ﻣﺪل ﻓﺮﮐﺘﺎل ﻏﻠﻈﺖ- ﺣﺠﻢ )C-V( ﻣﺸﺨﺺ ﻧﻤﺎﯾﯿﻢ. ﺑﺪﯾﻦ ﻣﻨﻈﻮر، در اﺑﺘﺪا ﻧﻤﻮدارﻫﺎي ﻟﮕﺎرﯾﺘﻢ- ﻟﮕﺎرﯾﺘﻢ C-V ﺑﺮاﺳﺎس ﻧﺘﺎﯾﺞ OK و WNN ﺗﻮﻟﯿﺪ ﺷﺪ. ﻧﻤﻮدارﻫﺎ ﺳﭙﺲ ﺑﺮاي ﺗﻌﯿﯿﻦ ﻣﻘﺎدﯾﺮ آﺳﺘﺎﻧﻪ ﻣﺲ زونﻫﺎي دﮔﺮﺳﺎﻧﯽ اﺳﺘﻔﺎده ﺷﺪﻧﺪ. ﺑﺮاي ﺑﺮرﺳﯽ ﻫﻤﺒﺴﺘﮕﯽ ﺑﯿﻦ ﻣﺪل زﻣﯿﻦﺷﻨﺎﺳﯽ و ﻧﺘﺎﯾﺞ ﻓﺮﮐﺘﺎل C-V ﻣﺎﺗﺮﯾﺲ ﻟﮕﺎرﯾﺘﻢ رﯾﺸﻪاي ﺑﮑﺎر ﺑﺮده ﺷﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﮐﻪ ﻣﻘﺎدﯾﺮ ﻣﺲ ﮐﻤﺘﺮ از 1/1 درﺻﺪ روش WNN وﮐﺴﻞﻫﺎي ﻫﻤﭙﻮﺷﺎنﺗﺮي ﺑﺎ زون دﮔﺮﺳﺎﻧﯽ ﻓﯿﻠﯿﮏ ﺑﺎ ﺻﺤﺖ ﻫﻤﭙﻮﺷﺎﻧﯽ )OA( 0/74 دارد. ﻫﻤﺒﺴﺘﮕﯽ ﻓﻀﺎﯾﯽ ﺑﯿﻦ زونﻫﺎي دﮔﺮﺳﺎﻧﯽ ﭘﺘﺎﺳﯿﮏ ﻣﺪﻟﺴﺎزي زﻣﯿﻦﺷﻨﺎﺳﯽ ﺳﻪ ﺑﻌﺪي و زونﻫﺎي ﻏﻠﻈﺖ ﺑﺎﻻي در ﻣﺪل ﻓﺮﮐﺘﺎل ﻏﻠﻈﺖ- ﺣﺠﻢ ﻧﺸﺎن داد ﮐﻪ زون دﮔﺮﺳﺎﻧﯽ داراي ﻣﻘﺎدﯾﺮ ﻣﺲ ﺑﯿﻦ 1/1 درﺻﺪ ﺗﺎ 2/2 درﺻﺪ ﺑﺎ OA ﺣﺪود 0/72 اﺳﺖ و در ﻧﻬﺎﯾﺖ ﻫﻤﭙﻮﺷﺎﻧﯽ ﻣﻨﺎﺳﺒﯽ ﺑﺎ ﻣﻘﺎدﯾﺮ ﻣﺲ ﺑﺰرﮔﺘﺮ از 2/2 درﺻﺪ ﺑﺎ OA ﺣﺪود 0/7 دارد. ﺑﻪ ﻃﻮر ﮐﻠﯽ، ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﮐﻪ WNN ﺑﺎ ﺗﺎﺑﻊ ﻓﻌﺎلﺳﺎزي ﻣﻮرﻟﺖ ﺑﺎ OA ﺑﺰرﮔﺘﺮ از OK ﻣﯽﺗﻮاﻧﺪ اﺑﺰار ﻣﻨﺎﺳﺐ و ﻣﻌﺘﺒﺮﺗﺮي ﺑﺮاي ﻣﺪلﺳﺎزي ﮐﻤﯽ زونﻫﺎي دﮔﺮﺳﺎﻧﯽ ﺑﻪﺟﺎي روشﻫﺎي ﮐﯿﻔﯽ ﺑﺎﺷﻨﺪ
Keywords :
Wavelet Wavelet Neural Network (WNN) , Alteration zones , Ordinary Kriging (OK) , C-V fractal model
Journal title :
Journal of Mining and Environment