Other language title :
ﺗﻠﻔﯿﻖ ﻧﺸﺎﻧﮕﺮﻫﺎي ژﺋﻮﻓﯿﺰﯾﮑﯽ ﺑﺎ ﮐﻤﮏ اﻟﮕﻮرﯾﺘﻢ ﯾﺎدﮔﯿﺮي ﻣﺎﺷﯿﻦ ﺟﺴﺘﺠﻮي Cuckoo ﺑﻪ ﻣﻨﻈﻮر ﺗﺨﻤﯿﻦ ﻣﻘﺎدﯾﺮ ﻋﯿﺎر ﻧﻘﺮه ﻣﻄﺎﻟﻌﻪ ﻣﻮردي: ﻣﻌﺪن ﻃﻼي زرﺷﻮران
Title of article :
Integrating Geophysical Attributes with New Cuckoo Search Machine- Learning Algorithm to Estimate Silver Grade Values–Case Study: Zarshouran Gold Mine
Author/Authors :
Alimoradi, A Department of Mining Engineering - Imam Khomeini International University - Ghazvin, Iran , Maleki, B Department of Mining Engineering - Imam Khomeini International University - Ghazvin, Iran , Karimi, A Department of Mining Engineering - Imam Khomeini International University - Ghazvin, Iran , Sahafzadeh, M Mining plus company - Vancouver, Canada , Abbasi, S Zarshouran gold mines and mineral industries development company - Tekab, Iran
Pages :
15
From page :
865
To page :
879
Abstract :
The exploration methods are divided into the direct and indirect categories. Among these, the indirect geophysical methods are more time- and cost-effective compared with the direct methods. The target of the geophysical investigations is to obtain an accurate image from the underground features. The Induced polarization (IP) is one of the common methods used for metal sulfide ore detection. Since metal ores are scattered in the host rock in the Zarshouran mine area, IP is considered as a major exploration method. Parallel to IP, the resistivity data gathering and processing are done to get a more accurate interpretation. In this work, we try to integrate the IP/RS geophysical attributes with borehole grade analyses and geological information using the cuckoo search machinelearning algorithm in order to estimate the silver grade values. The results obtained show that it is possible to estimate the grade values from the geophysical data accurately, especially in the areas without drilling data. This reduces the costs and time of the exploration and ore reserves estimation. Comparing the results of the intelligent inversion with the numerical methods, as the major tools to invert the geophysical data to the ore model, demonstrate a superior correlation between the results.
Farsi abstract :
روشﻫﺎي اﮐﺘﺸﺎﻓﯽ ﺑﻪ دو دﺳﺘﻪي ﻣﺴﺘﻘﯿﻢ و ﻏﯿﺮ ﻣﺴﺘﻘﯿﻢ ﺗﻘﺴﯿﻢ ﻣﯽﺷﻮﻧﺪ.از ﺑﯿﻦ آﻧﻬﺎ، روشﻫﺎي ﻏﯿﺮ ﻣﺴﺘﻘﯿﻢ ژﺋﻮﻓﯿﺰﯾﮑﯽ ﺟﺰء روشﻫﺎي ﮐﻢ ﻫﺰﯾﻨﻪ ﺗﺮ و ﻣﻘﺮون ﺑﻪ ﺻﺮﻓﻪﺗﺮ از ﻟﺤﺎظ زﻣﺎﻧﯽ در ﻗﯿﺎس ﺑﺎ روشﻫﺎي ﻣﺴﺘﻘﯿﻢ ﻫﺴﺘﻨﺪ. ﻫﺪف ﺑﺮرﺳﯽﻫﺎي ژﺋﻮﻓﯿﺰﯾﮑﯽ، ﺑﻪ دﺳﺖ آوردن ﯾﮏ ﺗﺼﻮﯾﺮ ﺻﺤﯿﺢ از زﯾﺮ زﻣﯿﻦ اﺳﺖ. روش ﭘﻼرﯾﺰاﺳﯿﻮن اﻟﻘﺎﯾﯽ، ﯾﮏ روش ﻣﺮﺳﻮم در ﺗﺸﺨﯿﺺ ﮐﺎﻧﻪﻫﺎي ﺳﻮﻟﻔﯿﺪي ﻓﻠﺰي اﺳﺖ. از آﻧﺠﺎﯾﯽ ﮐﻪ ﮐﺎﻧﻪﻫﺎي ﻓﻠﺰي در ﻣﺤﺪودهي ﻣﻌﺪﻧﯽ زرﺷﻮران ﺑﻪ ﺻﻮرت ﭘﺎرﮐﻨﺪه در ﺳﻨﮓ ﺑﺴﺘﺮ ﻗﺮار دارﻧﺪ، ﻟﺬا روش ﭘﻼرﯾﺰاﺳﯿﻮن اﻟﻘﺎﯾﯽ ﺑﻪ ﻋﻨﻮان روش اﺻﻠﯽ اﮐﺘﺸﺎﻓﺎت ژﺋﻮﻓﯿﺰﯾﮏ در اﯾﻦ ﻣﺤﺪوده ﻣﻮرد ﻧﻈﺮ ﻗﺮار ﮔﺮﻓﺖ. ﺑﻪ ﻣﻮازات ﺑﺮداﺷﺖﻫﺎي ﭘﻼرﯾﺰاﺳﯿﻮن اﻟﻘﺎﯾﯽ، ﺑﺮداﺷﺖ دادهﻫﺎي ﻣﻘﺎوﻣﺖ ﻣﺨﺼﻮص اﻟﮑﺘﺮﯾﮑﯽ ﻧﯿﺰ ﺑﻪ ﻣﻨﻈﻮر اﯾﺠﺎد ﺗﻔﺴﯿﺮي دﻗﯿﻘﺘﺮ ﺻﻮرت ﮔﺮﻓﺖ. در اﯾﻦ ﺗﺤﻘﯿﻖ ﺳﻌﯽ ﺑﺮ ﺗﻠﻔﯿﻖ دادهﻫﺎي ژﺋﻮﻓﯿﺰﯾﮏ ﻣﻘﺎوﻣﺖ ﻣﺨﺼﻮص اﻟﮑﺘﺮﯾﮑﯽ و ﭘﻼرﯾﺰاﺳﯿﻮن اﻟﻘﺎﯾﯽ ﺑﻪ ﻫﻤﺮاه ﻣﻘﺎدﯾﺮ ﻋﯿﺎري ﮔﻤﺎﻧﻪﻫﺎ و اﻃﻼﻋﺎت زﻣﯿﻦ ﺷﻨﺎﺳﯽ ﺑﻪ ﮐﻤﮏ اﻟﮕﻮرﯾﺘﻢ ﯾﺎدﮔﯿﺮي ﻣﺎﺷﯿﻦ ﺟﺴﺘﺠﻮي Cuckoo و ﺑﻪ ﻣﻨﻈﻮر ﺗﺨﻤﯿﻦ ﻣﻘﺎدﯾﺮ ﻋﯿﺎر ﻧﻘﺮه ﺷﺪه اﺳﺖ. ﻧﺘﺎﯾﺞ ﻧﺸﺎﻧﮕﺮ ﻗﺎﺑﻠﯿﺖ ﺑﺎﻻي روش در ﺗﺨﻤﯿﻦ ﻣﻘﺎدﯾﺮ ﻋﯿﺎر، ﻋﻠﯽ اﻟﺨﺼﻮص در ﻣﻨﺎﻃﻖ ﻓﺎﻗﺪ دادهﻫﺎي ﺣﻔﺎري اﺳﺖ. اﯾﻦ اﻣﺮ ﮐﻤﮏ ﺑﻪ ﮐﺎﻫﺶ ﻫﺰﯾﻨﻪﻫﺎ و زﻣﺎن ﻋﻤﻠﯿﺎت اﮐﺘﺸﺎف و ﺗﺨﻤﯿﻦ ذﺧﯿﺮه ﺧﻮاﻫﺪ ﮐﺮد. ﻣﻘﺎﯾﺴﻪ ﻧﺘﺎﯾﺞ ﻣﺪلﺳﺎزي ﻣﻌﮑﻮس ﻫﻮش ﻣﺼﻨﻮﻋﯽ و روش ﻣﺪلﺳﺎزي ﻋﺪدي، ﺑﻪ ﻋﻨﻮان روش اﺻﻠﯽ در ﻣﻌﮑﻮس ﺳﺎزي دادهﻫﺎي ژﺋﻮﻓﯿﺰﯾﮏ، ﻧﺸﺎﻧﮕﺮ اﻧﻄﺒﺎق ﺑﺴﯿﺎر ﺧﻮب ﻧﺘﺎﯾﺞ روش ﻫﻮش ﻣﺼﻨﻮﻋﯽ ﺑﺎ ﻣﺪل ﻋﺪدي ﺑﻮده اﺳت
Keywords :
Numerical methods , Zarshouran deposit , Machine-learning , Cuckoo search , IP/RS attributes
Journal title :
Journal of Mining and Environment
Serial Year :
2020
Record number :
2529791
Link To Document :
بازگشت