Title of article :
Real Gromov-Witten Invariants on the Moduli Space of Genus 0 Stable Maps to a Smooth Rational Projective Space.
Author/Authors :
Kwon, Seongchun University of Montana - Department of Mathematics, USA
From page :
155
To page :
186
Abstract :
We characterize transversality, non-transversality properties on the moduli space of genus 0 stable maps to a rational projective surface. If a target space is equipped with a real structure, i.e, anti-holomorphic involution, then the results have real enumerative applications. Firstly, we can define a real version of Gromov-Witten invariants. Secondly, we can prove the invariance of Welschinger’s invariant in algebraic geometric category.
Keywords :
Gromov , Witten invariant , enumerative invariant , transversality , intersection multiplicity , real structure.
Journal title :
Turkish Journal of Mathematics
Journal title :
Turkish Journal of Mathematics
Record number :
2530755
Link To Document :
بازگشت