Author/Authors :
Mohammadi, B Dept of Mechanical Engineering - Iran University of Science and Technology , Anbarzadeh, E Dept of Mechanical Engineering - Iran University of Science and Technology
Abstract :
The implant's metal base is not considered a foreign body when placed inside the jawbone and is compatible with the patient's jaw environment. This is due to its non-magnetic properties and high resistance to oxygen, acidic compounds, and salt. The implant’s structure and the surface will also affect the interaction between the metal and living tissues. One of the main reasons for the implant’s surface changes is the reduction of coalescing time and their integration with the jawbone. Since strong bone formation is crucial in dental implants treatment, with this operation, the bone formation in the pores of the fixture is done better, and the fixture fuses more to the bone. Implant surface coating increases bone deposition on the implant, which includes: mechanical changes (machining or sandblasting), chemical changes (acid pickling), electrochemical changes (anodic oxidation), vacuum changes, and heat or laser treatments. These changes control the growth and metabolic activities of bone cells. In this study, a review of various implant treatment methods, including sandblasting (SLA) and sandblasting with acid washing (SLActive), has been performed. Finally, it was concluded that SLA, SLActive, and HA surface treatment methods bind to the patient's jawbone faster than other methods in post-surgery weeks. In the meantime, the adsorption rate of the implant to the bone in the SLActive process compared to the SLA method increases by about 20 to 22% in the period of two to eight weeks after surgery, which is due to the integration speed of this method.
Keywords :
Implant Prosthesis , Implant Titanium Surface Treatment , SLA , SLActive