Title of article :
Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry
Author/Authors :
Peksen, Omer Karadeniz Technical University - Department of Mathematics, TURKEY , Khadjiev, Djavvat Karadeniz Technical University - Department of Mathematics, TURKEY , Oren, Idris Karadeniz Technical University - Department of Mathematics, TURKEY
From page :
147
To page :
160
Abstract :
Let M(n, p) be the group of all transformations of an n-dimensional pseudo-Euclidean space E^n_p of index p generated by all pseudo-orthogonal transformations and parallel translations of E^n_p. Definitions of a pseudo-Euclidean type of a curve, an invariant parametrization of a curve and an M(n, p)-equivalence of curves are introduced. All possible invariant parametrizations of a curve with a fixed pseudo-Euclidean type are described. The problem of the M(n, p)-equivalence of curves is reduced to that of paths. Global conditions of the M(n, p)-equivalence of curves are given in terms of the pseudo-Euclidean type of a curve and the system of polynomial differential M(n, p)-invariants of a curve x(s).
Keywords :
Curve , pseudo , Euclidean geometry , invariant parametrization
Journal title :
Turkish Journal of Mathematics
Journal title :
Turkish Journal of Mathematics
Record number :
2531219
Link To Document :
بازگشت