Title of article :
Comparative learning global particle swarm optimization for optimal distributed generations’ output
Author/Authors :
JAMIAN, Jasrul Jamani Universiti Teknologi Malaysia - Faculty of Electrical Engineering, Malaysia , MOKHLIS, Hazlie university of malaya - Faculty of Engineering, Malaysia , MUSTAFA, Mohd Wazir Universiti Teknologi Malaysia - Faculty of Electrical Engineering, Malaysia , ABDULLAH, Mohd Noor university of malaya - Faculty of Engineering, Malaysia , ABDULLAH, Mohd Noor Universiti Tun Hussein Onn Malaysia - Faculty of Electrical and Electronics Engineering, Malaysia , BAHARUDIN, Muhammad Ariff Universiti Teknologi Malaysia - Faculty of Electrical Engineering, Malaysia
From page :
1323
To page :
1337
Abstract :
The appropriate output of distributed generation (DG) in a distribution network is important for maximizing the benefit of the DG installation in the network. Therefore, most researchers have concentrated on the optimization technique to compute the optimal DG value. In this paper, the comparative learning in global particle swarm optimization (CLGPSO) method is introduced. The implementation of individual cognitive and social acceleration coefficient values for each particle and a new fourth term in the velocity formula make the process of convergence faster. This new algorithm is tested on 6 standard mathematical test functions and a 33-bus distribution system. The performance of the CLGPSO is compared with the inertia weight particle swarm optimization (PSO) and evolutionary PSO methods. Since the CLGPSO requires fewer iterations, less computing time, and a lower standard deviation value, it can be concluded that the CLGPSO is the superior algorithm in solving small-dimension mathematical and simple power system problems.
Keywords :
Distributed generator , particle swarm optimization , power loss reduction , standard mathematical test function
Journal title :
Turkish Journal of Electrical Engineering and Computer Sciences
Journal title :
Turkish Journal of Electrical Engineering and Computer Sciences
Record number :
2532660
Link To Document :
بازگشت