Title of article :
Stochastic Block NIHT Algorithm for Adaptive Block-Sparse System Identification
Author/Authors :
Habibi, Z. Research Institute for Information and Communications Technologies - Academic Center for Education - Culture and Research - Tehran - Iran , Zayyani, H. Faculty of Electrical and Computer Engineering - Qom University of Technology - Qom - Iran , Abadi, M.S.E Electronics Engineering Department - Faculty of Electrical Engineering - Shahid Rajaee Teacher Training University - Tehran - Iran
Pages :
12
From page :
115
To page :
126
Abstract :
Background and Objectives: Compressive sensing (CS) theory has been widely used in various fields, such as wireless communications. One of the main issues in the wireless communication field in recent years is how to identify block-sparse systems. We can follow this issue, by using CS theory and block-sparse signal recovery algorithms. Methods: This paper presents a new block-sparse signal recovery algorithm for the adaptive block-sparse system identification scenario, named stochastic block normalized iterative hard thresholding (SBNIHT) algorithm. The proposed algorithm is a new block version of the SSR normalized iterative hard thresholding (NIHT) algorithm with an adaptive filter framework. It uses a search method to identify the blocks of the impulse response of the unknown block-sparse system that we wish to estimate. In addition, the necessary condition to guarantee the convergence for this algorithm is derived in this paper. Results: Simulation results show that the proposed SBNIHT algorithm has a better performance than other algorithms in the literature with respect to the convergence and tracking capability. Conclusion: In this study, one new greedy algorithm is suggested for the block-sparse system identification scenario. Although the proposed SBNIHT algorithm is more complex than other competing algorithms but has better convergence and tracking capability performance.
Keywords :
Compressive Sensing (CS) , System identification , Block-sparse system , Adaptive filter
Journal title :
Journal of Electrical and Computer Engineering Innovations (JECEI)
Serial Year :
2021
Record number :
2545891
Link To Document :
بازگشت