Title of article :
Chromatically Unique Bipartite Graphs with Certain 3-independent Partition Numbers II
Author/Authors :
Hasni, Roslan Universiti Sains Malaysia - Pusat Pengajian Sains Matematik, Malaysia , Peng, Y.H. Universiti Putra Malaysia - Jabatan Matematik ,Institut Penyelidikan Matematik, Malaysia
From page :
147
To page :
168
Abstract :
For integers p, q, s with p≥ q ≥2 and s≥ 0, let K_s ^2 (p, q) denote the set of 2.connected bipartite graphs which can be obtained from K_p,q by deleting a set of s edges. In this paper, we prove that for any graph G Є K_2^-s (p, q) with p≥ q ≥3 and 1 ≤ s ≤ q-1, if the number of 3-independent partitions of G is 2^p-1 + 2^q-1 + s + 4, then G is chromatically unique. This result extends the similar theorem by Dong et al.
Keywords :
Chromatic polynomial , chromatically equivalence , chromatically unique.
Journal title :
Bulletin of the Malaysian Mathematical Sciences Society
Journal title :
Bulletin of the Malaysian Mathematical Sciences Society
Record number :
2549716
Link To Document :
بازگشت