Title of article :
Barycentric Ramsey Numbers for Small Graphs
Author/Authors :
Gonzalez, Samuel Universidad Simon Bolivar Nucleo Litoral, Venezuela , Gonzalez, Leida Universidad Central de Venezuela - Facultad de Ciencias - Departamento de Matematicas, Laboratorio LaTecS Centro ISYS, Venezuela , Ordaz, Oscar Universidad Central de Venezuela - Facultad de Ciencias - Departamento de Matematicas, Laboratorio LaTecS Centro ISYS, Venezuela
Abstract :
Let G be a finite abelian group of order n. The barycentric Ramsey number BR(H,G) is the minimum positive integer r such that any coloring of the edges of the complete graph Kr by elements of G contains a subgraph H whose assigned edge color constitutes a barycentric sequence, i.e. there exists one edge whose color is the “average” of the colors of its edges. These BR(H,G) are determined for some graphs, in particular for graphs with at most four edges without isolated vertices (i.e. small graphs) and G = Zn, 2 ≤ n ≤ 5. Elementary combinatorial arguments are used for these computations.
Keywords :
k , barycentric sequences , k , barycentric Davenport constant , Ramsey barycentric number , small graphs , zero , sum sequences.
Journal title :
Bulletin of the Malaysian Mathematical Sciences Society
Journal title :
Bulletin of the Malaysian Mathematical Sciences Society