Title of article :
Image Edge Detection with Fuzzy Ant Colony Optimization Algorithm
Author/Authors :
Dorrani, Z. Department of Electrical and Computer Engineering - University of Birjand - Birjand - Iran , Farsi, H. Department of Electrical and Computer Engineering - University of Birjand - Birjand - Iran , Mohamadzadeh, S. Department of Electrical and Computer Engineering - University of Birjand - Birjand - Iran
Pages :
7
From page :
2464
To page :
2470
Abstract :
Searching and optimizing by using collective intelligence are known as highly efficient methods that can be used to solve complex engineering problems. Ant colony optimization algorithm (ACO) is based on collective intelligence inspired by ants' behavior in finding the best path in search of food. In this paper, the ACO algorithm is used for image edge detection. A fuzzy-based system is proposed to increase the dynamics and speed of the proposed method. This system controls the amount of pheromone and distance. Thus, instead of considering constant values for the parameters of the algorithm, variable values are used to make the search space more accurate and reasonable. The fuzzy ant colony optimization algorithm is applied on several images to illustrate the performance of the proposed algorithm. The obtained results show better quality in extracting edge pixels by the proposed method compared to several image edge detection methods. The improvement of the proposed method is shown quantitatively by the investigation of the time and entropy of conventional methods and previous works. Also, the robustness of the proposed method is demonstrated against additive noise.
Keywords :
Ant Colony Optimization Algorithm , Edge Detection , Fuzzy System
Journal title :
International Journal of Engineering
Serial Year :
2020
Record number :
2556284
Link To Document :
بازگشت