Title of article :
Projectiles Optimization: A Novel Metaheuristic Algorithm for Global Optimization
Author/Authors :
Kahrizi, M. R. Department of Computer Engineering and Information Technology - Razi University, Kermanshah, Iran , Kabudian, S. J. Department of Computer Engineering and Information Technology - Razi University, Kermanshah, Iran
Pages :
15
From page :
1924
To page :
1938
Abstract :
Metaheuristic optimization algorithms are a relatively new class of optimization algorithms that are widely used for difficult optimization problems in which classic methods cannot be applied and are considered as known and very broad methods for crucial optimization problems. In this study, a new metaheuristic optimization algorithm is presented, the main idea of which is inspired by models in kinematics. This algorithm obtains better results compared to other optimization algorithms in this field and is able to explore new paths in its search for desirable points. Hence, after introducing the projectiles optimization (PRO) algorithm, in the first experiment, it is evaluated by the determined test functions of the IEEE congress on evolutionary computation (CEC) and compared with the known and powerful algorithms of this field. In the second try out, the performance of the PRO algorithm is measured in two practical applications, one for the training of the multi-layer perceptron (MLP) neural networks and the other for pattern recognition by Gaussian mixture modeling (GMM). The results of these comparisons are presented in various tables and figures. Based on the presented results, the accuracy and performance of the PRO algorithm are much higher than other existing methods.
Keywords :
Global Optimization , Metaheuristic Optimization Algorithm , Population-based Algorithm , Stochastic Optimization
Journal title :
International Journal of Engineering
Serial Year :
2020
Record number :
2557064
Link To Document :
بازگشت